Misplaced Pages

Raised cosine distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Raised-cosine distribution)
Raised cosine
Probability density functionPlot of the raised cosine PDF
Cumulative distribution functionPlot of the raised cosine CDF
Parameters

μ {\displaystyle \mu \,} (real)

s > 0 {\displaystyle s>0\,} (real)
Support x [ μ s , μ + s ] {\displaystyle x\in \,}
PDF 1 2 s [ 1 + cos ( x μ s π ) ] = 1 s hvc ( x μ s π ) {\displaystyle {\frac {1}{2s}}\left\,={\frac {1}{s}}\operatorname {hvc} \left({\frac {x-\mu }{s}}\,\pi \right)\,}
CDF 1 2 [ 1 + x μ s + 1 π sin ( x μ s π ) ] {\displaystyle {\frac {1}{2}}\left}
Mean μ {\displaystyle \mu \,}
Median μ {\displaystyle \mu \,}
Mode μ {\displaystyle \mu \,}
Variance s 2 ( 1 3 2 π 2 ) {\displaystyle s^{2}\left({\frac {1}{3}}-{\frac {2}{\pi ^{2}}}\right)\,}
Skewness 0 {\displaystyle 0\,}
Excess kurtosis 6 ( 90 π 4 ) 5 ( π 2 6 ) 2 = 0.59376 {\displaystyle {\frac {6(90-\pi ^{4})}{5(\pi ^{2}-6)^{2}}}=-0.59376\ldots \,}
MGF π 2 sinh ( s t ) s t ( π 2 + s 2 t 2 ) e μ t {\displaystyle {\frac {\pi ^{2}\sinh(st)}{st(\pi ^{2}+s^{2}t^{2})}}\,e^{\mu t}}
CF π 2 sin ( s t ) s t ( π 2 s 2 t 2 ) e i μ t {\displaystyle {\frac {\pi ^{2}\sin(st)}{st(\pi ^{2}-s^{2}t^{2})}}\,e^{i\mu t}}

In probability theory and statistics, the raised cosine distribution is a continuous probability distribution supported on the interval [ μ s , μ + s ] {\displaystyle } . The probability density function (PDF) is

f ( x ; μ , s ) = 1 2 s [ 1 + cos ( x μ s π ) ] = 1 s hvc ( x μ s π )  for  μ s x μ + s {\displaystyle f(x;\mu ,s)={\frac {1}{2s}}\left\,={\frac {1}{s}}\operatorname {hvc} \left({\frac {x-\mu }{s}}\,\pi \right){\text{ for }}\mu -s\leq x\leq \mu +s}

and zero otherwise. The cumulative distribution function (CDF) is

F ( x ; μ , s ) = 1 2 [ 1 + x μ s + 1 π sin ( x μ s π ) ] {\displaystyle F(x;\mu ,s)={\frac {1}{2}}\left}

for μ s x μ + s {\displaystyle \mu -s\leq x\leq \mu +s} and zero for x < μ s {\displaystyle x<\mu -s} and unity for x > μ + s {\displaystyle x>\mu +s} .

The moments of the raised cosine distribution are somewhat complicated in the general case, but are considerably simplified for the standard raised cosine distribution. The standard raised cosine distribution is just the raised cosine distribution with μ = 0 {\displaystyle \mu =0} and s = 1 {\displaystyle s=1} . Because the standard raised cosine distribution is an even function, the odd moments are zero. The even moments are given by:

E ( x 2 n ) = 1 2 1 1 [ 1 + cos ( x π ) ] x 2 n d x = 1 1 x 2 n hvc ( x π ) d x = 1 n + 1 + 1 1 + 2 n 1 F 2 ( n + 1 2 ; 1 2 , n + 3 2 ; π 2 4 ) {\displaystyle {\begin{aligned}\operatorname {E} (x^{2n})&={\frac {1}{2}}\int _{-1}^{1}x^{2n}\,dx=\int _{-1}^{1}x^{2n}\operatorname {hvc} (x\pi )\,dx\\&={\frac {1}{n+1}}+{\frac {1}{1+2n}}\,_{1}F_{2}\left(n+{\frac {1}{2}};{\frac {1}{2}},n+{\frac {3}{2}};{\frac {-\pi ^{2}}{4}}\right)\end{aligned}}}

where 1 F 2 {\displaystyle \,_{1}F_{2}} is a generalized hypergeometric function.

See also

References

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Category: