Misplaced Pages

Isotopes of roentgenium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Roentgenium-279)

Isotopes of roentgenium (111Rg)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Rg synth 0.09 s α87% Mt
SF13%
Rg synth 3.9 s α Mt
Rg synth 11 s SF86%
α14% Mt
Rg synth 130 s α Mt
Rg synth 5.1 min? SF
Rg synth 10.7 min? α Mt

Roentgenium (111Rg) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was Rg in 1994, which is also the only directly synthesized isotope; all others are decay products of heavier elements. There are seven known radioisotopes, having mass numbers of 272, 274, and 278–282. The longest-lived isotope is Rg with a half-life of about 2 minutes, although the unconfirmed Rg and Rg may have longer half-lives of about 5.1 minutes and 10.7 minutes respectively.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Rg 111 161 272.15327(25)# 4.2(11) ms α Mt 5+#, 6+#
Rg 111 163 274.15525(23)# 20(11) ms α Mt
Rg 111 167 278.16159(42)# 4.6+5.5
−1.6 ms
α Mt
Rg 111 168 279.16288(45)# 90+60
−25 ms
α (87%) Mt
SF (13%) (various)
Rg 111 169 280.16520(57)# 3.9(3) s α (87%) Mt
EC (13%) Ds
Rg 111 170 281.16676(83)# 11+3
−1 s
SF (86%) (various)
α (14%) Mt
Rg 111 171 282.16934(63)# 130(50) s α Mt
Rg 111 172 283.17110(73)# 5.1 min? SF (various)
Rg 111 175 286.17876(49)# 10.7 min? α Mt
This table header & footer:
  1. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  2. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  3. Modes of decay:
    EC: Electron capture
    SF: Spontaneous fission
  4. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Not directly synthesized, occurs as a decay product of Nh
  6. Not directly synthesized, occurs as a decay product of Nh
  7. Not directly synthesized, occurs in decay chain of Mc
  8. Not directly synthesized, occurs in decay chain of Mc
  9. Not directly synthesized, occurs in decay chain of Ts
  10. Not directly synthesized, occurs in decay chain of Ts
  11. Not directly synthesized, occurs in decay chain of Fl; unconfirmed
  12. Not directly synthesised, occurs in decay chain of Fl and Lv; unconfirmed

Isotopes and nuclear properties

Nucleosynthesis

Super-heavy elements such as roentgenium are produced by bombarding lighter elements in particle accelerators that induce fusion reactions. Whereas the lightest isotope of roentgenium, roentgenium-272, can be synthesized directly this way, all the heavier roentgenium isotopes have only been observed as decay products of elements with higher atomic numbers.

Depending on the energies involved, fusion reactions can be categorized as "hot" or "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50 MeV) that may either fission or evaporate several (3 to 5) neutrons. In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products. The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).

The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with Z=111.

Target Projectile CN Attempt result
Tl Zn Rg Failure to date
Pb Cu Rg Successful reaction
Bi Ni Rg Successful reaction
Pa Ca Rg Reaction yet to be attempted
U K Rg Reaction yet to be attempted
Pu Cl Rg Reaction yet to be attempted
Cm P Rg Reaction yet to be attempted
Cm P Rg Reaction yet to be attempted

Cold fusion

Before the first successful synthesis of roentgenium in 1994 by the GSI team, a team at the Joint Institute for Nuclear Research in Dubna, Russia, also tried to synthesize roentgenium by bombarding bismuth-209 with nickel-64 in 1986. No roentgenium atoms were identified. After an upgrade of their facilities, the team at GSI successfully detected 3 atoms of Rg in their discovery experiment. A further 3 atoms were synthesized in 2002. The discovery of roentgenium was confirmed in 2003 when a team at RIKEN measured the decays of 14 atoms of Rg.

The same roentgenium isotope was also observed by an American team at the Lawrence Berkeley National Laboratory (LBNL) from the reaction:


82Pb
+
29Cu

111Rg
+
n

This reaction was conducted as part of their study of projectiles with odd atomic number in cold fusion reactions.

The Tl(Zn,n)Rg reaction was tried by the RIKEN team in 2004 and repeated in 2010 in an attempt to secure the discovery of its parent Nh:


81Tl
+
30Zn

111Rg
+
n

Due to the weakness of the thallium target, they were unable to detect any atoms of Rg.

As decay product

List of roentgenium isotopes observed by decay
Evaporation residue Observed roentgenium isotope
Lv, Fl, Nh ? Rg ?
Fl, Nh ? Rg ?
Ts, Mc, Nh Rg
Ts, Mc, Nh Rg
Mc, Nh Rg
Mc, Nh Rg
Mc, Nh Rg
Nh Rg

All the isotopes of roentgenium except roentgenium-272 have been detected only in the decay chains of elements with a higher atomic number, such as nihonium. Nihonium currently has six known isotopes, with two more unconfirmed; all of them undergo alpha decays to become roentgenium nuclei, with mass numbers between 274 and 286. Parent nihonium nuclei can be themselves decay products of moscovium and tennessine, and (via unconfirmed branches) flerovium and livermorium. For example, in January 2010, the Dubna team (JINR) identified roentgenium-281 as a final product in the decay of tennessine via an alpha decay sequence:


117Ts

115Mc
+
2He

115Mc

113Nh
+
2He

113Nh

111Rg
+
2He

Nuclear isomerism

Rg

Two atoms of Rg have been observed in the decay chain of Nh. They decay by alpha emission, emitting alpha particles with different energies, and have different lifetimes. In addition, the two entire decay chains appear to be different. This suggests the presence of two nuclear isomers but further research is required.

Rg

Four alpha particles emitted from Rg with energies of 11.37, 11.03, 10.82, and 10.40 MeV have been detected. The GSI measured Rg to have a half-life of 1.6 ms while recent data from RIKEN have given a half-life of 3.8 ms. The conflicting data may be due to nuclear isomers but the current data are insufficient to come to any firm assignments.

Chemical yields of isotopes

Cold fusion

The table below provides cross-sections and excitation energies for cold fusion reactions producing roentgenium isotopes directly. Data in bold represent maxima derived from excitation function measurements. + represents an observed exit channel.

Projectile Target CN 1n 2n 3n
Ni Bi Rg 3.5 pb, 12.5 MeV
Cu Pb Rg 1.7 pb, 13.2 MeV

Theoretical calculations

Evaporation residue cross sections

The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

DNS = Di-nuclear system; σ = cross section

Target Projectile CN Channel (product) σmax Model Ref
U K Rg 4n (Rg) 0.21 pb DNS
Pu Cl Rg 4n (Rg) 0.33 pb DNS
Cm P Rg 4n (Rg) 1.85 pb DNS
Cm P Rg 4n (Rg) 0.41 pb DNS

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. http://www.jinr.ru/posts/both-neutron-properties-and-new-results-at-she-factory/
  3. ^ Oganessian, Yuri Ts.; Abdullin, F. Sh.; Alexander, C.; Binder, J.; et al. (2013-05-30). "Experimental studies of the Bk + Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope Mt". Physical Review C. 87 (054621). American Physical Society. Bibcode:2013PhRvC..87e4621O. doi:10.1103/PhysRevC.87.054621.
  4. ^ Hofmann, S.; Heinz, S.; Mann, R.; et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.). Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei. Exotic Nuclei. pp. 155–164. doi:10.1142/9789813226548_0024. ISBN 9789813226555.
  5. ^ Hofmann, S.; Heinz, S.; Mann, R.; et al. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A. 2016 (52): 180. Bibcode:2016EPJA...52..180H. doi:10.1140/epja/i2016-16180-4. S2CID 124362890.
  6. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. (2022). "New isotope Mc produced in the Am+Ca reaction". Physical Review C. 106 (64306): 064306. Bibcode:2022PhRvC.106f4306O. doi:10.1103/PhysRevC.106.064306. S2CID 254435744.
  7. Forsberg, U.; Rudolph, D.; Andersson, L.-L.; Di Nitto, A.; Düllmann, Ch.E.; Fahlander, C.; Gates, J.M.; Golubev, P.; Gregorich, K.E.; Gross, C.J.; Herzberg, R.-D.; Heßberger, F.P.; Khuyagbaatar, J.; Kratz, J.V.; Rykaczewski, K.; Sarmiento, L.G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B.G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; et al. (2016). "Recoil-α-fission and recoil-α–α-fission events observed in the reaction 48Ca + 243Am". Nuclear Physics A. 953: 117–138. arXiv:1502.03030. Bibcode:2016NuPhA.953..117F. doi:10.1016/j.nuclphysa.2016.04.025. S2CID 55598355.
  8. ^ Armbruster, Peter & Munzenberg, Gottfried (1989). "Creating superheavy elements". Scientific American. 34: 36–42.
  9. Barber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009). "Discovery of the element with atomic number 112 (IUPAC Technical Report)" (PDF). Pure and Applied Chemistry. 81 (7): 1331. doi:10.1351/PAC-REP-08-03-05.
  10. Fleischmann, Martin; Pons, Stanley (1989). "Electrochemically induced nuclear fusion of deuterium". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 261 (2): 301–308. doi:10.1016/0022-0728(89)80006-3.
  11. ^ Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; et al. (1995). "The new element 111". Zeitschrift für Physik A. 350 (4): 281–282. Bibcode:1995ZPhyA.350..281H. doi:10.1007/BF01291182. S2CID 18804192.
  12. Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Münzenberg, G.; Antalic, S.; Cagarda, P.; Kindler, B.; Kojouharova, J.; et al. (2002). "New results on elements 111 and 112". The European Physical Journal A. 14 (2): 147–157. Bibcode:2002EPJA...14..147H. doi:10.1140/epja/i2001-10119-x. S2CID 8773326.
  13. ^ Morita, K.; Morimoto, K. K.; Kaji, D.; Goto, S.; Haba, H.; Ideguchi, E.; Kanungo, R.; Katori, K.; Koura, H.; Kudo, H.; Ohnishi, T.; Ozawa, A.; Peter, J. C.; Suda, T.; Sueki, K.; Tanihata, I.; Tokanai, F.; Xu, H.; Yeremin, A. V.; Yoneda, A.; Yoshida, A.; Zhao, Y.-L.; Zheng, T. (2004). "Status of heavy element research using GARIS at RIKEN". Nuclear Physics A. 734: 101–108. Bibcode:2004NuPhA.734..101M. doi:10.1016/j.nuclphysa.2004.01.019.
  14. Folden, C. M.; Gregorich, K.; Düllmann, Ch.; Mahmud, H.; Pang, G.; Schwantes, J.; Sudowe, R.; Zielinski, P.; et al. (2004). "Development of an Odd-Z-Projectile Reaction for Heavy Element Synthesis: Pb(Ni,n)Ds and Pb(Cu,n)111" (PDF). Physical Review Letters. 93 (21): 212702. Bibcode:2004PhRvL..93u2702F. doi:10.1103/PhysRevLett.93.212702. PMID 15601003.
  15. ^ Morimoto, Kouji (2016). "The discovery of element 113 at RIKEN" (PDF). www.physics.adelaide.edu.au. 26th International Nuclear Physics Conference. Retrieved 14 May 2017.
  16. ^ Oganessian, Yuri Ts.; Abdullin, F. Sh.; Bailey, P. D.; et al. (2010-04-09). "Synthesis of a New Element with Atomic Number Z=117". Physical Review Letters. 104 (142502): 142502. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935.
  17. ^ Oganessian, Yu. Ts.; Penionzhkevich, Yu. E.; Cherepanov, E. A. (2007). "Heaviest Nuclei Produced in Ca-induced Reactions (Synthesis and Decay Properties)". AIP Conference Proceedings. Vol. 912. pp. 235–246. doi:10.1063/1.2746600.
  18. ^ Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; Katori, Kenji; Koura, Hiroyuki; Kudo, Hisaaki; Ohnishi, Tetsuya; Ozawa, Akira; Suda, Toshimi; Sueki, Keisuke; Xu, HuShan; Yamaguchi, Takayuki; Yoneda, Akira; Yoshida, Atsushi; Zhao, YuLiang (2004). "Experiment on the Synthesis of Element 113 in the Reaction Bi(Zn,n)113". Journal of the Physical Society of Japan. 73 (10): 2593–2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593.
  19. Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Archived from the original on 2012-12-11. Retrieved 2008-06-06.
  20. ^ Feng, Z.; Jin, G.; Li, J. (2009). "Production of new superheavy Z=108–114 nuclei with U, Pu and Cm targets". Physical Review C. 80 (5): 057601. arXiv:0912.4069. doi:10.1103/PhysRevC.80.057601. S2CID 118733755.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: