Misplaced Pages

List of elements by stability of isotopes

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Stable element)

This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (July 2022) (Learn how and when to remove this message)
Isotope half-lives. The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes larger.

This is a list of chemical elements by the stability of their isotopes. Of the first 82 elements in the periodic table, 80 have isotopes considered to be stable. Overall, there are 251 known stable isotopes in total.

Background

Atomic nuclei consist of protons and neutrons, which attract each other through the nuclear force, while protons repel each other via the electric force due to their positive charge. These two forces compete, leading to some combinations of neutrons and protons being more stable than others. Neutrons stabilize the nucleus, because they attract protons, which helps offset the electrical repulsion between protons. As a result, as the number of protons increases, an increasing ratio of neutrons to protons is needed to form a stable nucleus; if too many or too few neutrons are present with regard to the optimum ratio, the nucleus becomes unstable and subject to certain types of nuclear decay. Unstable isotopes decay through various radioactive decay pathways, most commonly alpha decay, beta decay, or electron capture. Many rare types of decay, such as spontaneous fission or cluster decay, are known. (See Radioactive decay for details.)

Of the first 82 elements in the periodic table, 80 have isotopes considered to be stable. The 83rd element, bismuth, was traditionally regarded as having the heaviest stable isotope, bismuth-209, but in 2003 researchers in Orsay, France, measured the half-life of
Bi
to be 1.9×10 years. Technetium and promethium (atomic numbers 43 and 61, respectively) and all the elements with an atomic number over 82 only have isotopes that are known to decompose through radioactive decay. No undiscovered elements are expected to be stable; therefore, lead is considered the heaviest stable element. However, it is possible that some isotopes that are now considered stable will be revealed to decay with extremely long half-lives (as with
Bi
). This list depicts what is agreed upon by the consensus of the scientific community as of 2023.

For each of the 80 stable elements, the number of the stable isotopes is given. Only 90 isotopes are expected to be perfectly stable, and an additional 161 are energetically unstable, but have never been observed to decay. Thus, 251 isotopes (nuclides) are stable by definition (including tantalum-180m, for which no decay has yet been observed). Those that may in the future be found to be radioactive are expected to have half-lives longer than 10 years (for example, xenon-134).

In April 2019 it was announced that the half-life of xenon-124 had been measured to 1.8 × 10 years. This is the longest half-life directly measured for any unstable isotope; only the half-life of tellurium-128 is longer.

Of the chemical elements, only 1 element (tin) has 10 such stable isotopes, 5 have 7 stable isotopes, 7 have 6 stable isotopes, 11 have 5 stable isotopes, 9 have 4 stable isotopes, 5 have 3 stable isotopes, 16 have 2 stable isotopes, and 26 have 1 stable isotope.

Additionally, about 31 nuclides of the naturally occurring elements have unstable isotopes with a half-life larger than the age of the Solar System (~10 years or more). An additional four nuclides have half-lives longer than 100 million years, which is far less than the age of the Solar System, but long enough for some of them to have survived. These 35 radioactive naturally occurring nuclides comprise the radioactive primordial nuclides. The total number of primordial nuclides is then 251 (the stable nuclides) plus the 35 radioactive primordial nuclides, for a total of 286 primordial nuclides. This number is subject to change if new shorter-lived primordials are identified on Earth.

One of the primordial nuclides is tantalum-180m, which is predicted to have a half-life in excess of 10 years, but has never been observed to decay. The even-longer half-life of 2.2 × 10 years of tellurium-128 was measured by a unique method of detecting its radiogenic daughter xenon-128 and is the longest known experimentally measured half-life. Another notable example is the only naturally occurring isotope of bismuth, bismuth-209, which has been predicted to be unstable with a very long half-life, but has been observed to decay. Because of their long half-lives, such isotopes are still found on Earth in various quantities, and together with the stable isotopes they are called primordial isotopes. All the primordial isotopes are given in order of their decreasing abundance on Earth. For a list of primordial nuclides in order of half-life, see List of nuclides.

118 chemical elements are known to exist. All elements to element 94 are found in nature, and the remainder of the discovered elements are artificially produced, with isotopes all known to be highly radioactive with relatively short half-lives (see below). The elements in this list are ordered according to the lifetime of their most stable isotope. Of these, three elements (bismuth, thorium, and uranium) are primordial because they have half-lives long enough to still be found on the Earth, while all the others are produced either by radioactive decay or are synthesized in laboratories and nuclear reactors. Only 13 of the 38 known-but-unstable elements have isotopes with a half-life of at least 100 years. Every known isotope of the remaining 25 elements is highly radioactive; these are used in academic research and sometimes in industry and medicine. Some of the heavier elements in the periodic table may be revealed to have yet-undiscovered isotopes with longer lifetimes than those listed here.

About 338 nuclides are found naturally on Earth. These comprise 251 stable isotopes, and with the addition of the 35 long-lived radioisotopes with half-lives longer than 100 million years, a total of 286 primordial nuclides, as noted above. The nuclides found naturally comprise not only the 286 primordials, but also include about 52 more short-lived isotopes (defined by a half-life less than 100 million years, too short to have survived from the formation of the Earth) that are daughters of primordial isotopes (such as radium from uranium); or else are made by energetic natural processes, such as carbon-14 made from atmospheric nitrogen by bombardment from cosmic rays.

Elements by number of primordial isotopes

An even number of protons or neutrons is more stable (higher binding energy) because of pairing effects, so even–even nuclides are much more stable than odd–odd. One effect is that there are few stable odd–odd nuclides: in fact only five are stable, with another four having half-lives longer than a billion years.

Another effect is to prevent beta decay of many even–even nuclides into another even–even nuclide of the same mass number but lower energy, because decay proceeding one step at a time would have to pass through an odd–odd nuclide of higher energy. (Double beta decay directly from even–even to even–even, skipping over an odd-odd nuclide, is only occasionally possible, and is a process so strongly hindered that it has a half-life greater than a billion times the age of the universe.) This makes for a larger number of stable even–even nuclides, up to three for some mass numbers, and up to seven for some atomic (proton) numbers and at least four for all stable even-Z elements beyond iron (except strontium and lead).

Since a nucleus with an odd number of protons is relatively less stable, odd-numbered elements tend to have fewer stable isotopes. Of the 26 "monoisotopic" elements that have only a single stable isotope, all but one have an odd atomic number—the single exception being beryllium. In addition, no odd-numbered element has more than two stable isotopes, while every even-numbered element with stable isotopes, except for helium, beryllium, and carbon, has at least three. Only a single odd-numbered element, potassium, has three primordial isotopes; none have more than three.

Tables

The following tables give the elements with primordial nuclides, which means that the element may still be identified on Earth from natural sources, having been present since the Earth was formed out of the solar nebula. Thus, none are shorter-lived daughters of longer-lived parental primordials. Two nuclides which have half-lives long enough to be primordial, but have not yet been conclusively observed as such (Pu and Sm), have been excluded.

The tables of elements are sorted in order of decreasing number of nuclides associated with each element. (For a list sorted entirely in terms of half-lives of nuclides, with mixing of elements, see List of nuclides.) Stable and unstable (marked decays) nuclides are given, with symbols for unstable (radioactive) nuclides in italics. Note that the sorting does not quite give the elements purely in order of stable nuclides, since some elements have a larger number of long-lived unstable nuclides, which place them ahead of elements with a larger number of stable nuclides. By convention, nuclides are counted as "stable" if they have never been observed to decay by experiment or from observation of decay products (extremely long-lived nuclides unstable only in theory, such as tantalum-180m, are counted as stable).

The first table is for even-atomic numbered elements, which tend to have far more primordial nuclides, due to the stability conferred by proton-proton pairing. A second separate table is given for odd-atomic numbered elements, which tend to have far fewer stable and long-lived (primordial) unstable nuclides.

Primordial isotopes (in order of decreasing abundance on Earth) of even-Z elements
Z
Element
Stable
Decays
unstable in boldodd neutron number in pink
50 tin 10
Sn

Sn

Sn

Sn

Sn

Sn

Sn

Sn

Sn

Sn
54 xenon 7 2
Xe

Xe

Xe

Xe

Xe

Xe

Xe

Xe

Xe
48 cadmium 6 2
Cd

Cd

Cd

Cd

Cd

Cd

Cd

Cd
52 tellurium 6 2
Te

Te

Te

Te

Te

Te

Te

Te
44 ruthenium 7
Ru

Ru

Ru

Ru

Ru

Ru

Ru
66 dysprosium 7
Dy

Dy

Dy

Dy

Dy

Dy

Dy
70 ytterbium 7
Yb

Yb

Yb

Yb

Yb

Yb

Yb
80 mercury 7
Hg

Hg

Hg

Hg

Hg

Hg

Hg
42 molybdenum 6 1
Mo

Mo

Mo

Mo

Mo

Mo

Mo
56 barium 6 1
Ba

Ba

Ba

Ba

Ba

Ba

Ba
64 gadolinium 6 1
Gd

Gd

Gd

Gd

Gd

Gd

Gd
60 neodymium 5 2
Nd

Nd

Nd

Nd

Nd

Nd

Nd
62 samarium 5 2
Sm

Sm

Sm

Sm

Sm

Sm

Sm
76 osmium 5 2
Os

Os

Os

Os

Os

Os

Os
46 palladium 6
Pd

Pd

Pd

Pd

Pd

Pd
68 erbium 6
Er

Er

Er

Er

Er

Er
20 calcium 5 1
Ca

Ca

Ca

Ca

Ca

Ca
34 selenium 5 1
Se

Se

Se

Se

Se

Se
36 krypton 5 1
Kr

Kr

Kr

Kr

Kr

Kr
72 hafnium 5 1
Hf

Hf

Hf

Hf

Hf

Hf
78 platinum 5 1
Pt

Pt

Pt

Pt

Pt

Pt
22 titanium 5
Ti

Ti

Ti

Ti

Ti
28 nickel 5
Ni

Ni

Ni

Ni

Ni
30 zinc 5
Zn

Zn

Zn

Zn

Zn
32 germanium 4 1
Ge

Ge

Ge

Ge

Ge
40 zirconium 4 1
Zr

Zr

Zr

Zr

Zr
74 tungsten 4 1
W

W

W

W

W
16 sulfur 4
S

S

S

S
24 chromium 4
Cr

Cr

Cr

Cr
26 iron 4
Fe

Fe

Fe

Fe
38 strontium 4
Sr

Sr

Sr

Sr
58 cerium 4
Ce

Ce

Ce

Ce
82 lead 4
Pb

Pb

Pb

Pb
8 oxygen 3
O

O

O
10 neon 3
Ne

Ne

Ne
12 magnesium 3
Mg

Mg

Mg
14 silicon 3
Si

Si

Si
18 argon 3
Ar

Ar

Ar
2 helium 2
He

He
6 carbon 2
C

C
92 uranium 0 2
U

U
4 beryllium 1
Be
90 thorium 0 1
Th
Primordial isotopes of odd-Z elements
Z
Element
Stab
Dec
unstable: boldodd N in pink
19 potassium 2 1
K

K

K
1 hydrogen 2
H

H
3 lithium 2
Li

Li
5 boron 2
B

B
7 nitrogen 2
N

N
17 chlorine 2
Cl

Cl
29 copper 2
Cu

Cu
31 gallium 2
Ga

Ga
35 bromine 2
Br

Br
47 silver 2
Ag

Ag
51 antimony 2
Sb

Sb
73 tantalum 2
Ta

Ta
77 iridium 2
Ir

Ir
81 thallium 2
Tl

Tl
23 vanadium 1 1
V

V
37 rubidium 1 1
Rb

Rb
49 indium 1 1
In

In
57 lanthanum 1 1
La

La
63 europium 1 1
Eu

Eu
71 lutetium 1 1
Lu

Lu
75 rhenium 1 1
Re

Re
9 fluorine 1
F
11 sodium 1
Na
13 aluminium 1
Al
15 phosphorus 1
P
21 scandium 1
Sc
25 manganese 1
Mn
27 cobalt 1
Co
33 arsenic 1
As
39 yttrium 1
Y
41 niobium 1
Nb
45 rhodium 1
Rh
53 iodine 1
I
55 caesium 1
Cs
59 praseodymium 1
Pr
65 terbium 1
Tb
67 holmium 1
Ho
69 thulium 1
Tm
79 gold 1
Au
83 bismuth 0 1
Bi

Elements with no primordial isotopes

No primordial isotopes
Longest-lived isotope > 1 day
Z
Element
t Longest-
lived
isotope
94 plutonium 8.08×10 yr
Pu
96 curium 1.56×10 yr
Cm
43 technetium 4.21×10 yr
Tc
93 neptunium 2.14×10 yr
Np
91 protactinium 32,760 yr
Pa
95 americium 7,370 yr
Am
88 radium 1,600 yr
Ra
97 berkelium 1,380 yr
Bk
98 californium 900 yr
Cf
84 polonium 125 yr
Po
89 actinium 21.772 yr
Ac
61 promethium 17.7 yr
Pm
99 einsteinium 1.293 yr
Es
100 fermium 100.5 d
Fm
101 mendelevium 51.3 d
Md
86 radon 3.823 d
Rn
No primordial isotopes
Longest-lived isotope < 1 day
Z
Element
t Longest-
lived
isotope
105 dubnium 16 h
Db
103 lawrencium 11 h
Lr
85 astatine 8.1 h
At
102 nobelium 58 min
No
104 rutherfordium 48 min
Rf
87 francium 22 min
Fr
106 seaborgium 14 min
Sg
107 bohrium 2.4 min
Bh
111 roentgenium 1.7 min
Rg
112 copernicium 28 s
Cn
108 hassium 16 s
Hs
110 darmstadtium 12.7 s
Ds
113 nihonium 9.5 s
Nh
109 meitnerium 4.5 s
Mt
114 flerovium 1.9 s
Fl
115 moscovium 650 ms
Mc
116 livermorium 57 ms
Lv
117 tennessine 51 ms
Ts
118 oganesson 690 μs
Og
Periodic table with elements colored according to the half-life of their most stable isotope.   Elements which contain at least one stable isotope.   Slightly radioactive elements: the most stable isotope is very long-lived, with a half-life of over two million years.   Radioactive elements: the most stable isotope has half-life between 800 and 34,000 years.   Significantly radioactive elements: the most stable isotope has half-life between one day and 130 years.   Highly radioactive elements: the most stable isotope has half-life between several minutes and one day.   Extremely radioactive elements: the most stable known isotope has half-life less than several minutes.

See also

Footnotes

  1. ^ See Stability of technetium isotopes and Stability of promethium isotopes for a detailed discussion as to why technetium and promethium have no stable isotopes.
  2. ^ Isotopes that have a half-life of more than about 10 yr may still be found on Earth, but only those with half-lives above 7×10 yr (as of U) are found in appreciable quantities. The present list neglects a few isotopes with half-lives about 10 yr because they have been measured in tiny quantities on Earth. Uranium-234 with its half-life of 246,000 yr and natural isotopic abundance 0.0055% is a special case: it is a decay product of uranium-238 rather than a primordial nuclide.
  3. ^ There are unstable isotopes with extremely long half-lives that are also found on Earth, and some of them are even more abundant than all the stable isotopes of a given element (for example, beta-active Re is twice as abundant as stable Re). Also, a bigger natural abundance of an isotope just implies that its formation was favored by the stellar nucleosynthesis process that produced the matter now constituting the Earth (and, of course, the rest of the Solar System) (see also Formation and evolution of the Solar System). In the case of argon the cosmically rarer
    Ar dominates on Earth over
    Ar as argon is too volatile to have been retained in the early proto-atmosphere of Earth while
    Ar is a decay product of long-lived and non-volatile
    K
    . Most argon in Earth's atmosphere is a product of potassium-40 decay. Most argon in the universe is not. At the present time 0.012% (120 ppm) of potassium on Earth is
    K. Taking the age of Earth and the half life of
    K (~1.25 billion years), this ratio was approximately an order of magnitude higher when the planet first formed. About 10.72% of that since-decayed
    K produced
    Ar, the rest having decayed to
    Ca.
  4. ^ While bismuth has only one primordial isotope, uranium has three isotopes that are found in nature in significant amounts (
    U
    ,
    U
    , and
    U
    ; the first two are primordial, while U is radiogenic), and thorium has two (primordial
    Th
    and radiogenic
    Th
    ).
  5. See many different industrial and medical applications of radioactive elements in Radionuclide, Nuclear medicine, Common beta emitters, Commonly used gamma-emitting isotopes, Fluorine-18, Cobalt-60, Strontium-90, Technetium-99m, Iodine-123, Iodine-124, Promethium-147, Iridium-192, etc.
  6. ^ For elements with a higher atomic number than californium (with Z>98), there might exist undiscovered isotopes that are more stable than the known ones.
  7. ^ Legend: yr=year, d=day, h=hour, min=minute, s=second.

References

  1. ^ Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Retrieved 2019-08-30.
  2. Marcillac, Pierre de; Noël Coron; Gérard Dambier; Jacques Leblanc & Jean-Pierre Moalic (2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature. 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID 12712201. S2CID 4415582.
  3. Dumé, Belle (2003-04-23). "Bismuth breaks half-life record for alpha decay". Institute of Physics Publishing.
  4. Siegel, Ethan. "Dark Matter Search Discovers A Spectacular Bonus: The Longest-Lived Unstable Element Ever". Forbes. Retrieved 2019-04-25.
  5. "Noble Gas Research". Archived from the original on 2011-09-28. Retrieved 2013-01-10. Novel Gas Research. Accessed April 26, 2009
Periodic table
Periodic table forms
Sets of elements
By periodic table structure
Groups
Periods
Blocks
By metallicity
Metals
Metalloids
Nonmetals
Other sets
Elements
Lists
Properties
Data pages
History
See also
Category: