Misplaced Pages

Isotopes of sulfur

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Sulfur-36)

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Isotopes of sulfur" – news · newspapers · books · scholar · JSTOR (May 2018) (Learn how and when to remove this message)
Isotopes of sulfur (16S)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
S 94.8% stable
S 0.760% stable
S 4.37% stable
S trace 87.37 d β Cl
S 0.02% stable
S abundances vary greatly (between 3.96 and 4.77 percent) in natural samples.
Standard atomic weight Ar°(S)

Sulfur (16S) has 23 known isotopes with mass numbers ranging from 27 to 49, four of which are stable: S (95.02%), S (0.75%), S (4.21%), and S (0.02%). The preponderance of sulfur-32 is explained by its production from carbon-12 plus successive fusion capture of five helium-4 nuclei, in the so-called alpha process of exploding type II supernovas (see silicon burning).

Other than S, the radioactive isotopes of sulfur are all comparatively short-lived. S is formed from cosmic ray spallation of Ar in the atmosphere. It has a half-life of 87 days. The next longest-lived radioisotope is sulfur-38, with a half-life of 170 minutes. Isotopes lighter than S mostly decay to isotopes of phosphorus or silicon, while S and heavier radioisotopes decay to isotopes of chlorine.

The beams of several radioactive isotopes (such as those of S) have been studied theoretically within the framework of the synthesis of superheavy elements, especially those ones in the vicinity of island of stability.

When sulfide minerals are precipitated, isotopic equilibration among solids and liquid may cause small differences in the δS values of co-genetic minerals. The differences between minerals can be used to estimate the temperature of equilibration. The δC and δS of coexisting carbonates and sulfides can be used to determine the pH and oxygen fugacity of the ore-bearing fluid during ore formation.

In most forest ecosystems, sulfate is derived mostly from the atmosphere; weathering of ore minerals and evaporites also contribute some sulfur. Sulfur with a distinctive isotopic composition has been used to identify pollution sources, and enriched sulfur has been added as a tracer in hydrologic studies. Differences in the natural abundances can also be used in systems where there is sufficient variation in the S of ecosystem components. Rocky Mountain lakes thought to be dominated by atmospheric sources of sulfate have been found to have different δS values from oceans believed to be dominated by watershed sources of sulfate.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
S 16 11 27.01878(43)# 16.3(2) ms β, p (61%) Si (5/2+)
β (36%) P
β, 2p (3.0%) Al
S 16 12 28.00437(17) 125(10) ms β (79.3%) P 0+
β, p (20.7%) Si
S 16 13 28.996678(14) 188(4) ms β (53.6%) P 5/2+#
β, p (46.4%) Si
S 16 14 29.98490677(22) 1.1798(3) s β P 0+
S 16 15 30.97955700(25) 2.5534(18) s β P 1/2+
S 16 16 31.9720711735(14) Stable 0+ 0.9485(255)
S 16 17 32.9714589086(14) Stable 3/2+ 0.00763(20)
S 16 18 33.967867011(47) Stable 0+ 0.04365(235)
S 16 19 34.969032321(43) 87.37(4) d β Cl 3/2+ Trace
S 16 20 35.96708069(20) Stable 0+ 1.58(17)×10
S 16 21 36.97112550(21) 5.05(2) min β Cl 7/2−
S 16 22 37.9711633(77) 170.3(7) min β Cl 0+
S 16 23 38.975134(54) 11.5(5) s β Cl (7/2)−
S 16 24 39.9754826(43) 8.8(22) s β Cl 0+
S 16 25 40.9795935(44) 1.99(5) s β Cl 7/2−#
S 16 26 41.9810651(30) 1.016(15) s β (>96%) Cl 0+
β, n (<1%) Cl
S 16 27 42.9869076(53) 265(13) ms β (60%) Cl 3/2−
β, n (40%) Cl
S 320.7(5) keV 415.0(26) ns IT S (7/2−)
S 16 28 43.9901188(56) 100(1) ms β (82%) Cl 0+
β, n (18%) Cl
S 1365.0(8) keV 2.619(26) μs IT S 0+
S 16 29 44.99641(32)# 68(2) ms β, n (54%) Cl 3/2−#
β (46%) Cl
S 16 30 46.00069(43)# 50(8) ms β Cl 0+
S 16 31 47.00773(43)# 24# ms
3/2−#
S 16 32 48.01330(54)# 10# ms
0+
S 16 33 49.02189(63)# 4# ms
1/2−#
This table header & footer:
  1. S – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  5. Bold symbol as daughter – Daughter product is stable.
  6. ( ) spin value – Indicates spin with weak assignment arguments.
  7. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  8. Heaviest theoretically stable nuclide with equal numbers of protons and neutrons
  9. Cosmogenic

See also

References

  1. "Standard Atomic Weights: Sulfur". CIAAW. 2009.
  2. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. Zagrebaev, Valery; Greiner, Walter (2008-09-24). "Synthesis of superheavy nuclei: A search for new production reactions". Physical Review C. 78 (3): 034610. arXiv:0807.2537. Bibcode:2008PhRvC..78c4610Z. doi:10.1103/PhysRevC.78.034610. S2CID 122586703.
  4. Zhu, Long (2019-12-01). "Possibilities of producing superheavy nuclei in multinucleon transfer reactions based on radioactive targets *". Chinese Physics C. 43 (12): 124103. Bibcode:2019ChPhC..43l4103Z. doi:10.1088/1674-1137/43/12/124103. ISSN 1674-1137. S2CID 250673444.
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.

External links

Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: