Misplaced Pages

Gallium nitrate: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 05:40, 6 October 2010 editRifleman 82 (talk | contribs)Extended confirmed users32,435 edits External links: goes to the bottom← Previous edit Latest revision as of 09:34, 28 December 2024 edit undoGraeme Bartlett (talk | contribs)Administrators249,716 editsm subscripting 
(77 intermediate revisions by 45 users not shown)
Line 1: Line 1:
{{Chembox {{Chembox
| Verifiedfields = changed
| ImageFile = gallium nitrate.png
| Watchedfields = changed
| ImageSize = 200px
| verifiedrevid = 389037313
| ImageFile = Gallium nitrate nonanhydrate.jpg
| IUPACName = Gallium trinitrate | IUPACName = Gallium trinitrate
| OtherNames = Gallium(III) nitrate</br>Nitric acid, gallium salt | OtherNames = Gallium(III) nitrate<br>Nitric acid, gallium salt
| Section1 = {{Chembox Identifiers |Section1={{Chembox Identifiers
| CASNo_Ref = {{cascite|changed|CAS}}
| CASNo = 69365-72-6 | CASNo = 13494-90-1
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 1200983
| ChemSpiderID = 55543
| DrugBank = DB05260
| EINECS = 236-815-5
| PubChem = 61635 | PubChem = 61635
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = Y2V2R4W9TQ
| UNNumber = 1477
| SMILES = (=O)().(=O)().(=O)(). | SMILES = (=O)().(=O)().(=O)().
| StdInChI=1S/Ga.3NO3/c;3*2-1(3)4/q+3;3*-1
| StdInChIKey = CHPZKNULDCNCBW-UHFFFAOYSA-N
}} }}
| Section2 = {{Chembox Properties |Section2={{Chembox Properties
| Formula = Ga(NO<sub>3</sub>)<sub>3</sub> | Formula = Ga(NO<sub>3</sub>)<sub>3</sub>
| MolarMass = | MolarMass = 255.7377 g/mol
| Appearance = | Appearance =
| Density = | Density =
Line 17: Line 30:
| BoilingPt = | BoilingPt =
| Solubility = }} | Solubility = }}
| Section3 = {{Chembox Hazards |Section3={{Chembox Hazards
| EUClass = {{Hazchem O}} {{Hazchem Xi}} | GHSPictograms = {{GHS03}}{{GHS05}}{{GHS07}}
| GHSSignalWord = Danger
| RPhrases = {{R8}} {{R36/37/38}}
| HPhrases = {{H-phrases|272|314|315|319|335}}
| SPhrases = {{S17}} {{S26}}
| PPhrases = {{P-phrases|210|220|221|260|261|264|271|280|301+330+331|302+352|303+361+353|304+340|305+351+338|310|312|321|332+313|337+313|362|363|370+378|403+233|405|501}}
| Autoignition = }}
| AutoignitionPt = }}
}} }}


'''Gallium nitrate''' (brand name Ganite) is the ] ] of ] with the ] Ga(NO<sub>3</sub>)<sub>3</sub>. It is a drug used to treat symptomatic ] secondary to cancer. It works by preventing the breakdown of bone through the inhibition of ] activity, thus lowering the amount of free ] in the blood.<ref>Gallium Nitrate monograph. Lexi-Comp Online, Lexi-Drugs Online, Lexi-Comp Inc. Hudson, OH. Available at: . Accessed September 13th, 2008.</ref><ref> at drugs.com</ref> Gallium nitrate is also used to synthesize other gallium compounds. '''Gallium nitrate''' (brand name Ganite) is the ] ] of ] with the ] Ga(NO<sub>3</sub>)<sub>3</sub>. It is a drug used to treat symptomatic ] secondary to cancer. It works by preventing the breakdown of bone through the inhibition of ] activity, thus lowering the amount of free ] in the blood.<ref name="gallium">Gallium Nitrate monograph. Lexi-Comp Online, Lexi-Drugs Online, Lexi-Comp Inc. Hudson, OH. Available at: {{Webarchive|url=https://web.archive.org/web/20041116092554/http://crlonline.com/crlonline|date=2004-11-16}}. Accessed September 13th, 2008.</ref><ref> at drugs.com</ref> Gallium nitrate is also used to synthesize other gallium compounds.

==History==
] (Ga) was discovered in 1875 by P.É. Lecoq de Boisbaudran.<ref name= "Gallium radiopharmaceutical chemistry">{{cite journal | last1 = Green | first1 = MA | last2 = Welch | first2 = MJ | year = 1989 | title = Gallium radiopharmaceutical chemistry | journal = Int J Rad Appl Instrum B | volume = 16 | issue = 5| pages = 435–448 | doi = 10.1016/0883-2897(89)90053-6 | pmid = 2681083 }}</ref> In most of its compounds, gallium is found with an oxidation number of 3+. Gallium chemically behaves similarly to ] 3+ when forming a ].<ref name ="Antitumor activity and toxicity of salts of inorganic groups"> {{cite journal | last1 = Hart | first1 = MM | last2 = Adamson | first2 = RH | year = 1971 | title = Antitumor activity and toxicity of salts of inorganic group 3a metals: aluminum, gallium, indium, and thallium | journal = Proc Natl Acad Sci USA | volume = 68 | issue = 7| pages = 1623–1626 | doi=10.1073/pnas.68.7.1623| pmid = 5283954 | pmc = 389254 | bibcode = 1971PNAS...68.1623H | doi-access = free }}</ref> That means gallium(III) and iron(III) are similar in similar ], electrical charge, ion diameter and ].

===Biological activity===
Gallium atoms are bound to the phosphates of ] at low gallium concentrations, forming a stable complex.<ref name= "toxicity of gallium nitrate">{{cite journal | last1 = Hart | first1 = MM | last2 = Smith | first2 = CF | last3 = Yancey | first3 = ST | last4 = Adamson | first4 = RH | year = 1971 | title = Toxicity and antitumor activity of gallium nitrate and periodically related metal salts | journal = J Natl Cancer Inst | volume = 47 | issue = 5 | pages = 1121–1127 | pmid = 4330799 }}</ref> Gallium competes with ] in DNA binding, since its DNA affinity is 100 times higher than that of magnesium. No interactions have been found between the metal and DNA bases.<ref name="Raman spectroscopy">{{cite journal | last1 = Manfait | first1 = M | last2 = Collery | first2 = P | year = 1984 | title = Etude in vitro par spectroscopie Raman de la conformation d'un ADN sous l'influence des ions magnésium et gallium | journal = Magnesium Bull | volume = 4 | pages = 153–155 }}</ref> According to Hedley et al., gallium inhibits replicative DNA synthesis, the major gallium-specific target probably being ].<ref name="Raman spectroscopy"/> In addition to that, it was reported by Chitambar that gallium binds to ] more strongly than iron. The ] ] ] inhibits DNA synthesis by acting on the M2 subunit of ribonucleotide reductase.<ref name= "Effect of gallium on DNA synthesis"> {{cite journal | last1 = Hedley | first1 = DW | last2 = Tripp | first2 = EH | last3 = Slowiaczek | first3 = P | last4 = Mann | first4 = GJ | year = 1988 | title = Effect of gallium on DNA synthesis by human T-cell lymphoblasts | journal = Cancer Res | volume = 48 | issue = 11| pages = 3014–3018 | pmid = 3259158 }}</ref>
Gallium(III) seems to act as an antagonist to the actions of several ions (Ca<sup>2+</sup>, Mg<sup>2+</sup>, Fe<sup>2+</sup> and Zn<sup>2+</sup>) in processes of ]. The action of gallium on bone metabolism decreases ] associated with cancer. However, gallium is mostly found within the cell as a salt in ]s.


==Preparation== ==Preparation==
Gallium nitrate is commercially available as the hydrate. The nonahydrate may also be prepared by dissolving gallium in nitric acid, followed by recrystallization.<ref>{{cite journal | last1 = Birnara | first1 = Christiana | last2 = Kessler | first2 = Vadim G. | last3 = Papaefstathiou | first3 = Giannis S. | title = Mononuclear gallium(III) complexes based on salicylaldoximes: Synthesis, structure and spectroscopic characterization | journal = ] | volume = 28 | pages = 3291 | year = 2009 | doi = 10.1016/j.poly.2009.04.039}}</ref> Gallium nitrate is commercially available as the hydrate. The nonahydrate may also be prepared by dissolving gallium in nitric acid, followed by recrystallization.<ref>{{cite journal | last1 = Birnara | first1 = Christiana | last2 = Kessler | first2 = Vadim G. | last3 = Papaefstathiou | first3 = Giannis S. | title = Mononuclear gallium(III) complexes based on salicylaldoximes: Synthesis, structure and spectroscopic characterization | journal = ] | volume = 28 | pages = 3291 | year = 2009 | doi = 10.1016/j.poly.2009.04.039 | issue = 15}}</ref> The structure of gallium nitrate nonahydrate has been determined by X-ray crystallography.<ref>{{cite journal | last1 = Hendsbee | first1 = Arthur | last2 = Pye | first2 = Cory | last3 = Masuda | first3 = Jason | title = Hexaaquagallium(III) trinitrate trihydrate | journal = ] | volume = 65 | pages = i65 | year = 2009 | issue = 8 | doi = 10.1107/S1600536809028086| pmc = 2977161 | pmid=21583299}}</ref>

==Use and manufacturing==

===Preparation of gallium nitride from gallium nitrate===
GaN powder was synthesized using a direct current (DC) non-transferred arc plasma.<ref name="Balkas"> Kim, Tae-Hee, Sooseok Choi, and Dong-Wha Park. "Thermal plasma synthesis of crystalline gallium nitride nanopowder from gallium nitrate hydrate and melamine." ''Nanomaterials'' 6.3 (2016): 38.</ref>

===Medication Information===
Gallium nitrate injection is a clear, colorless, odorless, sterile solution of gallium nitrate, a hydrated ] salt of the group IIIa element, gallium. The stable, nonahydrate, Ga(NO<sub>3</sub>)<sub>3</sub>•9H<sub>2</sub>O is a white, slightly hygroscopic, crystalline powder of molecular weight 417.87, that is readily soluble in water. Each mL of Ganite (gallium nitrate injection) contains gallium nitrate 25&nbsp;mg (on an anhydrous basis) and sodium citrate dihydrate 28.75&nbsp;mg. The solution may contain ] or ] for pH adjustment to 6.0-7.0.<ref name= "Gallium nitrate information"> . National Center for Biotechnology Information, U.S. National Library of Medicine. April 13th, 2012 </ref>

===Overdose===
Use of higher doses of gallium nitrate than recommended may cause ], vomiting and increases risk of ]. In the case of overdose, ] should be monitored, patients should receive vigorous hydration for 2–3 days and any further drug administrations should be discontinued.<ref name= "Gallium nitrate information"/>

==Treatment==
The action of gallium in gallium nitrate on bone ] decreases the hypercalcemia associated with cancer. Gallium inhibits osteoclastic activity and therefore decreases ] crystal formation{{citation needed|date=November 2024}}, with adsorption of gallium onto the surfaces of ] crystals.<ref> {{cite journal | last1 = Warrell | first1 = RP Jr | last2 = Issacs | first2 = M | last3 = Alcock | first3 = NW | last4 = Bockman | first4 = RS | year = 1987 | title = Gallium nitrate for treatment of refractory hypercalcemia from parathyroid carcinoma | journal = Ann Intern Med | volume = 107 | issue = 5| pages = 683–686 | doi=10.7326/0003-4819-107-5-683| pmid = 2821862 }}</ref> Also, the increased concentration of gallium in the bone leads to increasing the synthesis of ] as well as the formation of the ] inside the cell. It has been reported that a protracted infusion was effective against cancer-associated hypercalcemia.<ref> {{cite journal | last1 = Warrell | first1 = RP Jr | year = 1988 | title = Questions about clinical trials in hypercalcemia | journal = J Clin Oncol | volume = 6 | issue = 5| pages = 759–761 | doi=10.1200/jco.1988.6.5.759| pmid = 3284973 }}</ref> Preliminary studies in ], ] of the urothelium and ] are also promising.<ref> {{cite journal | last1 = Seligman | first1 = PA | last2 = Crawford | first2 = ED | year = 1991 | title = Treatment of advanced transitional cell carcinoma of the bladder with continuousinfusion gallium nitrate | journal = J Natl Cancer Inst | volume = 83 | issue = 21| pages = 1582–1584 | doi=10.1093/jnci/83.21.1582| pmid = 1960756 }}</ref> Another interesting schedule of subcutaneous injection with low doses of gallium nitrate has been proposed, especially for the treatment of bone ], but the definitive results have not yet been published.<ref> {{cite journal | last1 = Warrell | first1 = RP Jr | year = 1997 | title = Gallium nitrate for the treatment of bone metastases | journal = Cancer | volume = 80 | issue = 8 Suppl | pages = 1680–1685 | doi=10.1002/(sici)1097-0142(19971015)80:8+<1680::aid-cncr19>3.0.co;2-w| pmid = 9362436 | doi-access = free }}</ref>

==Chemical reactivity==
Gallium nitrate can react with ] to generate heat and products that may be gaseous. The products may themselves be capable of further reactions (such as combustion in the air). The ] of materials in this group can be rapid, but often requires initiation of heat, ] and addition of a solvent. Explosive mixtures of gallium nitrate with reducing agents often persist unchanged for long periods if initiation is prevented. Some inorganic oxidizing agents such as gallium nitrate are salts of metals that are soluble in water; dissolution dilutes but does not nullify the oxidizing power of such materials. Generally, inorganic oxidizing agents can react violently with active metals, ], ], and ].<ref name= "Gallium nitrate information"/>

==Adverse reactions==

===Kidney===
Adverse renal effects have been reported in about 12.5% of patients treated with gallium nitrate. Two patients receiving gallium nitrate and one patient receiving ] developed acute ] in a controlled trial of patients with cancer-related hypercalcemia. Also, it was reported that gallium nitrate should not be administered to patients with ] >2.5&nbsp;mg/dL.<ref name= "Gallium nitrate information"/>

===Blood pressure===
In a controlled trial of patients, it was noticed a decrease in mean ] and ] blood pressure after the treatment with gallium nitrate. The decrease in ] was asymptomatic and did not require specific treatment.<ref name= "Gallium nitrate information"/>

===Hematologic===
High doses of gallium nitrate were associated with ] when used in treating patients for advanced cancer. In results, several patients have received red blood cell ].<ref name= "Gallium nitrate information"/>


==See also== ==See also==
Line 33: Line 82:


==References== ==References==
{{reflist}} {{reflist|30em}}


==External links== ==External links==
* , brand website * , brand website


{{inorganic-compound-stub}}
{{pharmacology-stub}}



{{Gallium compounds}} {{Gallium compounds}}
{{nitrates}}


] ]

Latest revision as of 09:34, 28 December 2024

Gallium nitrate
Names
IUPAC name Gallium trinitrate
Other names Gallium(III) nitrate
Nitric acid, gallium salt
Identifiers
CAS Number
3D model (JSmol)
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.033.453 Edit this at Wikidata
EC Number
  • 236-815-5
PubChem CID
UNII
UN number 1477
CompTox Dashboard (EPA)
InChI
  • InChI=1S/Ga.3NO3/c;3*2-1(3)4/q+3;3*-1Key: CHPZKNULDCNCBW-UHFFFAOYSA-N
SMILES
  • (=O)().(=O)().(=O)().
Properties
Chemical formula Ga(NO3)3
Molar mass 255.7377 g/mol
Hazards
GHS labelling:
Pictograms GHS03: OxidizingGHS05: CorrosiveGHS07: Exclamation mark
Signal word Danger
Hazard statements H272, H314, H315, H319, H335
Precautionary statements P210, P220, P221, P260, P261, P264, P271, P280, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P321, P332+P313, P337+P313, P362, P363, P370+P378, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Gallium nitrate (brand name Ganite) is the gallium salt of nitric acid with the chemical formula Ga(NO3)3. It is a drug used to treat symptomatic hypercalcemia secondary to cancer. It works by preventing the breakdown of bone through the inhibition of osteoclast activity, thus lowering the amount of free calcium in the blood. Gallium nitrate is also used to synthesize other gallium compounds.

History

Gallium (Ga) was discovered in 1875 by P.É. Lecoq de Boisbaudran. In most of its compounds, gallium is found with an oxidation number of 3+. Gallium chemically behaves similarly to iron 3+ when forming a coordination complex. That means gallium(III) and iron(III) are similar in similar coordination number, electrical charge, ion diameter and electron configuration.

Biological activity

Gallium atoms are bound to the phosphates of DNA at low gallium concentrations, forming a stable complex. Gallium competes with magnesium in DNA binding, since its DNA affinity is 100 times higher than that of magnesium. No interactions have been found between the metal and DNA bases. According to Hedley et al., gallium inhibits replicative DNA synthesis, the major gallium-specific target probably being ribonucleotide reductase. In addition to that, it was reported by Chitambar that gallium binds to transferrin more strongly than iron. The transferrin gallium complex inhibits DNA synthesis by acting on the M2 subunit of ribonucleotide reductase. Gallium(III) seems to act as an antagonist to the actions of several ions (Ca, Mg, Fe and Zn) in processes of cellular metabolism. The action of gallium on bone metabolism decreases hypercalcemia associated with cancer. However, gallium is mostly found within the cell as a salt in lysosomes.

Preparation

Gallium nitrate is commercially available as the hydrate. The nonahydrate may also be prepared by dissolving gallium in nitric acid, followed by recrystallization. The structure of gallium nitrate nonahydrate has been determined by X-ray crystallography.

Use and manufacturing

Preparation of gallium nitride from gallium nitrate

GaN powder was synthesized using a direct current (DC) non-transferred arc plasma.

Medication Information

Gallium nitrate injection is a clear, colorless, odorless, sterile solution of gallium nitrate, a hydrated nitrate salt of the group IIIa element, gallium. The stable, nonahydrate, Ga(NO3)3•9H2O is a white, slightly hygroscopic, crystalline powder of molecular weight 417.87, that is readily soluble in water. Each mL of Ganite (gallium nitrate injection) contains gallium nitrate 25 mg (on an anhydrous basis) and sodium citrate dihydrate 28.75 mg. The solution may contain sodium hydroxide or hydrochloric acid for pH adjustment to 6.0-7.0.

Overdose

Use of higher doses of gallium nitrate than recommended may cause nausea, vomiting and increases risk of chronic kidney disease. In the case of overdose, serum calcium should be monitored, patients should receive vigorous hydration for 2–3 days and any further drug administrations should be discontinued.

Treatment

The action of gallium in gallium nitrate on bone metabolism decreases the hypercalcemia associated with cancer. Gallium inhibits osteoclastic activity and therefore decreases hydroxyapatite crystal formation, with adsorption of gallium onto the surfaces of hydroxyapatite crystals. Also, the increased concentration of gallium in the bone leads to increasing the synthesis of collagen as well as the formation of the bone tissue inside the cell. It has been reported that a protracted infusion was effective against cancer-associated hypercalcemia. Preliminary studies in bladder carcinoma, carcinoma of the urothelium and lymphomas are also promising. Another interesting schedule of subcutaneous injection with low doses of gallium nitrate has been proposed, especially for the treatment of bone metastases, but the definitive results have not yet been published.

Chemical reactivity

Gallium nitrate can react with reducing agents to generate heat and products that may be gaseous. The products may themselves be capable of further reactions (such as combustion in the air). The chemical reduction of materials in this group can be rapid, but often requires initiation of heat, catalyst and addition of a solvent. Explosive mixtures of gallium nitrate with reducing agents often persist unchanged for long periods if initiation is prevented. Some inorganic oxidizing agents such as gallium nitrate are salts of metals that are soluble in water; dissolution dilutes but does not nullify the oxidizing power of such materials. Generally, inorganic oxidizing agents can react violently with active metals, cyanides, esters, and thiocyanates.

Adverse reactions

Kidney

Adverse renal effects have been reported in about 12.5% of patients treated with gallium nitrate. Two patients receiving gallium nitrate and one patient receiving calcitonin developed acute renal failure in a controlled trial of patients with cancer-related hypercalcemia. Also, it was reported that gallium nitrate should not be administered to patients with serum creatinine >2.5 mg/dL.

Blood pressure

In a controlled trial of patients, it was noticed a decrease in mean systolic and diastolic blood pressure after the treatment with gallium nitrate. The decrease in blood pressure was asymptomatic and did not require specific treatment.

Hematologic

High doses of gallium nitrate were associated with anemia when used in treating patients for advanced cancer. In results, several patients have received red blood cell transfusions.

See also

References

  1. Gallium Nitrate monograph. Lexi-Comp Online, Lexi-Drugs Online, Lexi-Comp Inc. Hudson, OH. Available at: Archived 2004-11-16 at the Wayback Machine. Accessed September 13th, 2008.
  2. Ganite at drugs.com
  3. Green, MA; Welch, MJ (1989). "Gallium radiopharmaceutical chemistry". Int J Rad Appl Instrum B. 16 (5): 435–448. doi:10.1016/0883-2897(89)90053-6. PMID 2681083.
  4. Hart, MM; Adamson, RH (1971). "Antitumor activity and toxicity of salts of inorganic group 3a metals: aluminum, gallium, indium, and thallium". Proc Natl Acad Sci USA. 68 (7): 1623–1626. Bibcode:1971PNAS...68.1623H. doi:10.1073/pnas.68.7.1623. PMC 389254. PMID 5283954.
  5. Hart, MM; Smith, CF; Yancey, ST; Adamson, RH (1971). "Toxicity and antitumor activity of gallium nitrate and periodically related metal salts". J Natl Cancer Inst. 47 (5): 1121–1127. PMID 4330799.
  6. ^ Manfait, M; Collery, P (1984). "Etude in vitro par spectroscopie Raman de la conformation d'un ADN sous l'influence des ions magnésium et gallium". Magnesium Bull. 4: 153–155.
  7. Hedley, DW; Tripp, EH; Slowiaczek, P; Mann, GJ (1988). "Effect of gallium on DNA synthesis by human T-cell lymphoblasts". Cancer Res. 48 (11): 3014–3018. PMID 3259158.
  8. Birnara, Christiana; Kessler, Vadim G.; Papaefstathiou, Giannis S. (2009). "Mononuclear gallium(III) complexes based on salicylaldoximes: Synthesis, structure and spectroscopic characterization". Polyhedron. 28 (15): 3291. doi:10.1016/j.poly.2009.04.039.
  9. Hendsbee, Arthur; Pye, Cory; Masuda, Jason (2009). "Hexaaquagallium(III) trinitrate trihydrate". Acta Crystallographica E. 65 (8): i65. doi:10.1107/S1600536809028086. PMC 2977161. PMID 21583299.
  10. Kim, Tae-Hee, Sooseok Choi, and Dong-Wha Park. "Thermal plasma synthesis of crystalline gallium nitride nanopowder from gallium nitrate hydrate and melamine." Nanomaterials 6.3 (2016): 38.
  11. ^ Gallium Nitrate. National Center for Biotechnology Information, U.S. National Library of Medicine. April 13th, 2012
  12. Warrell, RP Jr; Issacs, M; Alcock, NW; Bockman, RS (1987). "Gallium nitrate for treatment of refractory hypercalcemia from parathyroid carcinoma". Ann Intern Med. 107 (5): 683–686. doi:10.7326/0003-4819-107-5-683. PMID 2821862.
  13. Warrell, RP Jr (1988). "Questions about clinical trials in hypercalcemia ". J Clin Oncol. 6 (5): 759–761. doi:10.1200/jco.1988.6.5.759. PMID 3284973.
  14. Seligman, PA; Crawford, ED (1991). "Treatment of advanced transitional cell carcinoma of the bladder with continuousinfusion gallium nitrate". J Natl Cancer Inst. 83 (21): 1582–1584. doi:10.1093/jnci/83.21.1582. PMID 1960756.
  15. Warrell, RP Jr (1997). "Gallium nitrate for the treatment of bone metastases". Cancer. 80 (8 Suppl): 1680–1685. doi:10.1002/(sici)1097-0142(19971015)80:8+<1680::aid-cncr19>3.0.co;2-w. PMID 9362436.

External links

Gallium compounds
Gallium(−V)
Gallium(I)
Gallium(II)
Gallium(I,III)
Gallium(III)
Organogallium(III) compounds
  • Ga(C5H7O2)3
  • Ga(CH3)3
  • Ga(C2H5)3
  • Salts and covalent derivatives of the nitrate ion
    HNO3 He
    LiNO3 Be(NO3)2 B(NO3)−4 RONO2
    +CO3
    +C2O4
    NO3
    NH4NO3
    HOONO2 FNO3
    +F
    Ne
    NaNO3 Mg(NO3)2 Al(NO3)3
    Al(NO3)−4
    Si P +SO4 ClONO2
    +Cl
    Ar
    KNO3 Ca(NO3)2 Sc(NO3)3 Ti(NO3)4 VO(NO3)3 Cr(NO3)3 Mn(NO3)2 Fe(NO3)2
    Fe(NO3)3
    Co(NO3)2
    Co(NO3)3
    Ni(NO3)2 CuNO3
    Cu(NO3)2
    Zn(NO3)2 Ga(NO3)3 Ge As +SeO3 BrNO3
    +Br
    Kr
    RbNO3 Sr(NO3)2 Y(NO3)3 Zr(NO3)4 NbO(NO3)3 MoO2(NO3)2 Tc Ru Rh(NO3)3 Pd(NO3)2 AgNO3 Cd(NO3)2 In(NO3)3 Sn(NO3)4 Sb4O4(OH)2(NO3)2 Te INO3
    +IO3
    Xe(NO3)2
    CsNO3 Ba(NO3)2 * Lu(NO3)3 Hf(NO3)4 TaO(NO3)3 WO2(NO3)2 ReO3NO3 Os Ir3O(NO3)10 Pt Au(NO3)−4 Hg2(NO3)2
    Hg(NO3)2
    TlNO3
    Tl(NO3)3
    Pb(NO3)2 Bi(NO3)3
    BiO(NO3)
    Po(NO3)4 At Rn
    FrNO3 Ra(NO3)2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
     
    * La(NO3)3 Ce(NO3)3
    Ce(NO3)4
    Pr(NO3)3 Nd(NO3)3 Pm(NO3)3 Sm(NO3)3 Eu(NO3)3 Gd(NO3)3 Tb(NO3)3 Dy(NO3)3 Ho(NO3)3 Er(NO3)3 Tm(NO3)3 Yb(NO3)3
    ** Ac(NO3)3 Th(NO3)4 PaO(NO3)3 UO2(NO3)2 Np(NO3)4 Pu(NO3)4 Am(NO3)3 Cm(NO3)3 Bk(NO3)3 Cf(NO3)3 Es Fm Md No
    Categories: