Misplaced Pages

Gompertz distribution: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 11:54, 4 December 2011 edit194.254.137.115 (talk)No edit summary← Previous edit Latest revision as of 08:13, 3 June 2024 edit undoOAbot (talk | contribs)Bots441,761 editsm Open access bot: doi updated in citation with #oabot. 
(157 intermediate revisions by 55 users not shown)
Line 1: Line 1:
{{Short description|Continuous probability distribution, named after Benjamin Gompertz}}
{{unreferenced|date=December 2011}}
{{more footnotes|date=December 2011}}
{{Probability distribution|
name = Gompertz distribution| {{Probability distribution
type =density| | name = Gompertz distribution
| type = density
pdf_image =]</br><small>Note: b=2.322</small>|
| pdf_image =]
cdf_image =]</br><small>Note: b=2.322</small>|
| cdf_image =]
parameters =<math>\eta, b > 0\,\!</math>|
pdf =<math>b\eta e^{bx}e^{\eta}\exp\left(-\eta e^{bx} \right)</math>| | parameters =shape <math>\eta>0\,\!</math>, scale <math>b > 0\,\!</math>
cdf =<math>1-\exp\left(-\eta\left(e^{bx}-1 \right)\right)</math>| | support =<math>x \in [0, \infty)\!</math>
mean =<math>(-1/b)e^{\eta}\text{Ei}\left(-\eta\right)</math></br><math> \text {where Ei}\left(z\right)=\int\limits_{-z}^{\infin}\left(e^{-u}/u\right)du</math>| | pdf =<math>b\eta \exp\left(\eta + bx -\eta e^{bx} \right)</math>
| cdf =<math>1-\exp\left(-\eta\left(e^{bx}-1 \right)\right)</math>
median =|
mode = <math>=\left(1/b\right)\ln \left(1/\eta\right)\ </math></br><math>\text {with }0 <\text {F}\left(x^*\right)<1-e^{-1} = 0.632121, 0<\eta<1 </math></br><math>=0, \quad \eta \ge 1</math>| | quantile =<math>\frac{1}{b}\ln\left(1-\frac{1}{\eta}\ln(1-u)\right)</math>|
variance =<math>\left(1/b\right)^2 e^{\eta}\{-2\eta { \ }_3\text {F}_3 \left(1,1,1;2,2,2;-\eta\right)+\gamma^2</math><math> | mean =<math>(1/b)e^{\eta}\text{Ei}\left(-\eta\right)</math><br><math> \text {where Ei}\left(z\right)=\int\limits_{-z}^{\infin}\left(e^{-v}/v\right)dv</math>
| median =<math>\left(1/b\right)\ln\left</math>
+\left(\pi^2/6\right)+2\gamma\ln\left(\eta\right)+^2-e^{\eta}^2\}</math></br><math>\text{ where } \gamma \text{ is the Euler constant: }\,\!</math></br><math> \gamma=-\psi\left(1\right)=\text{0.5777215... }</math><math>\text { and } { }_3\text {F}_3\left(1,1,1;2,2,2;-z\right)=</math></br><math>\sum_{k=0}^\infty\left\left(-1\right)^k\left(z^k/k!\right)</math>|
| mode = <math>=\left(1/b\right)\ln \left(1/\eta\right)\ </math><br><math>\text {with }0 <\text {F}\left(x^*\right)<1-e^{-1} = 0.632121, 0<\eta<1 </math><br><math>=0, \quad \eta \ge 1</math>
skewness =|
| variance =<math>\left(1/b\right)^2 e^{\eta}\{-2\eta { \ }_3\text {F}_3 \left(1,1,1;2,2,2;\eta\right)+\gamma^2</math><math>
kurtosis =|
+\left(\pi^2/6\right)+2\gamma\ln\left(\eta\right)+^2-e^{\eta}^2\}</math><br><math>\begin{align}\text{ where } &\gamma \text{ is the Euler constant: }\,\!\\ &\gamma=-\psi\left(1\right)=\text{0.577215... }\end{align}</math><math>\begin{align}\text { and } { }_3\text {F}_3&\left(1,1,1;2,2,2;-z\right)=\\&\sum_{k=0}^\infty\left\left(-1\right)^k\left(z^k/k!\right)\end{align}</math>
entropy =|
mgf =| | skewness =
char =| | kurtosis =
| entropy =
}}
| mgf =<math>\text{E}\left(e^{-t x}\right)=\eta e^{\eta}\text{E}_{t/b}\left(\eta\right)</math><br/><math>\text{with E}_{t/b}\left(\eta\right)=\int_1^\infin e^{-\eta v} v^{-t/b}dv,\ t>0</math>
The '''Gompertz distribution''' is an extreme value (reverted ]) distribution (i.e., the distribution of <math>-x</math>) truncated at zero. It has been used as a model of customer lifetime.
| char =
}}

In ] and ], the '''Gompertz distribution''' is a ], named after ]. The Gompertz distribution is often applied to describe the distribution of adult lifespans by ]s<ref name=Vaupel1986/><ref name=Preston2001/> and ].<ref name=Benjamin1980/><ref name=Willemse2000/> Related fields of science such as biology<ref name=Economos1982/> and gerontology<ref name=Brown1974/> also considered the Gompertz distribution for the analysis of survival. More recently, computer scientists have also started to model the failure rates of computer code by the Gompertz distribution.<ref name=Ohishi2009/> In Marketing Science, it has been used as an individual-level simulation for ] modeling.<ref name=BG/> In ], particularly the ], the walk length of a random ] (SAW) is distributed according to the Gompertz distribution.<ref>Tishby, Biham, Katzav (2016), The distribution of path lengths of self avoiding walks on Erdős-Rényi networks, {{arXiv|1603.06613}}.</ref>


== Specification == == Specification ==

===Probability density function=== ===Probability density function===


The ] of the Gompertz distribution is: The ] of the Gompertz distribution is:


:<math>f\left(x|\eta, b\right)=b\eta e^{bx}e^{\eta}\exp\left(-\eta e^{bx} \right)</math> :<math>f\left(x;\eta, b\right)=b\eta \exp\left(\eta + b x -\eta e^{bx} \right)\text{for }x \geq 0, \,</math>


where <math>b > 0\,\!</math> is the ] and <math>\eta > 0\,\!</math> is the ] of the Gompertz distribution. where <math>b > 0\,\!</math> is the ] and <math>\eta > 0\,\!</math> is the ] of the Gompertz distribution. In the actuarial and biological sciences and in demography, the Gompertz distribution is parametrized slightly differently (]).


===Cumulative distribution function=== ===Cumulative distribution function===
Line 34: Line 39:
The ] of the Gompertz distribution is: The ] of the Gompertz distribution is:


:<math>F\left(x|\eta, b\right)= 1-\exp\left(-\eta\left(e^{bx}-1 \right)\right)</math> :<math>F\left(x;\eta, b\right)= 1-\exp\left(-\eta\left(e^{bx}-1 \right)\right) ,</math>
where <math>\eta, b>0, x>0\,\!</math>. where <math>\eta, b>0,</math> and <math> x \geq 0 \, .</math>


===Moment generating function=== ===Moment generating function===
The moment generating function is such as: The moment generating function is:
<math>\text{E}\left(e^{-t x}|\eta,b\right)=\eta e^{\eta}\text{E}_{t/b}\left(\eta\right)</math><br/> :<math>\text{E}\left(e^{-t X}\right)=\eta e^{\eta}\text{E}_{t/b}\left(\eta\right)</math>
where
With
<math>\text{E}_{t/b}\left(\eta\right)=\int_1^\infin e^{-\eta v} v^{-t/b}dv,\ t>0</math> :<math>\text{E}_{t/b}\left(\eta\right)=\int_1^\infin e^{-\eta v} v^{-t/b}dv,\ t>0.</math>


== Properties == == Properties ==
The Gompertz distribution is right-skewed for all values of <math>\eta\,\!</math>. The Gompertz distribution is a flexible distribution that can be skewed to the right and to the left. Its ] <math>h(x)=\eta b e^{bx}</math> is a convex function of <math>F\left(x;\eta, b\right)</math>. The model can be fitted into the innovation-imitation paradigm with
<math> p = \eta b </math> as the coefficient of innovation and <math> b </math> as the coefficient of imitation. When <math> t </math> becomes large, <math> z(t) </math> approaches <math> \infty </math>. The model can also belong to the propensity-to-adopt paradigm with
<math>\eta </math> as the propensity to adopt and <math> b </math> as the overall appeal of the new offering.
===Shapes=== ===Shapes===
The Gompertz density function can take on different shapes depending on the values of the shape parameter <math>\eta\,\!</math>: The Gompertz density function can take on different shapes depending on the values of the shape parameter <math>\eta\,\!</math>:
* <math>\eta \geq 1\,</math> the probability density function has its mode at 0. * When <math>\eta \geq 1,\,</math> the probability density function has its mode at 0.
* <math>\eta < 1\,</math> the probability density function has its mode at * When <math>0 < \eta < 1,\,</math> the probability density function has its mode at
::<math>x^*=\left(1/b\right)\ln \left(1/\eta\right)\text {with }0 <\text {F}\left(x^*\right)<1-e^{-1} = 0.632121</math> ::<math>x^*=\left(1/b\right)\ln \left(1/\eta\right)\text {with }0 < F\left(x^*\right)<1-e^{-1} = 0.632121</math>

===Kullback-Leibler divergence===
If <math>f_1</math> and <math>f_2</math> are the probability density functions of two Gompertz distributions, then their ] is given by
:<math>
\begin{align}
D_{KL} (f_1 \parallel f_2)
& = \int_{0}^{\infty} f_1(x; b_1, \eta_1) \, \ln \frac{f_1(x; b_1, \eta_1)}{f_2(x; b_2, \eta_2)} dx \\
& = \ln \frac{e^{\eta_1} \, b_1 \, \eta_1}{e^{\eta_2} \, b_2 \, \eta_2}
+ e^{\eta_1} \left[ \left(\frac{b_2}{b_1} - 1 \right) \, \operatorname{Ei}(- \eta_1)
+ \frac{\eta_2}{\eta_1^{\frac{b_2}{b_1}}} \, \Gamma \left(\frac{b_2}{b_1}+1, \eta_1 \right) \right]
- (\eta_1 + 1)
\end{align}
</math>
where <math>\operatorname{Ei}(\cdot)</math> denotes the ] and <math>\Gamma(\cdot,\cdot)</math> is the upper ].<ref>Bauckhage, C. (2014), Characterizations and Kullback-Leibler Divergence of Gompertz Distributions, {{arXiv|1402.3193}}.</ref>


== Related distributions == == Related distributions ==
*If ''X'' is defined to be the result of sampling from a ] until a negative value ''Y'' is produced, and setting ''X''=&minus;''Y'', then ''X'' has a Gompertz distribution.
The '''Gompertz distribution''' is a natural conjugate to a gamma distribution. If <math>\eta\,\!</math> varies according to a ] with shape parameter <math>\alpha\,\!</math> and scale parameter <math>\beta\,\!</math> (mean = <math>\alpha\beta\,\!</math>), the cumulative distribution function is Gamma/Gompertz (G/G).
*The ] is a natural ] to a Gompertz likelihood with known scale parameter <math>b \,\!.</math><ref name=BG/>
* When <math>\eta\,\!</math> varies according to a ] with shape parameter <math>\alpha\,\!</math> and scale parameter <math>\beta\,\!</math> (mean = <math>\alpha/\beta\,\!</math>), the distribution of <math>x</math> is Gamma/Gompertz.<ref name=BG/>
</ref>]]
* If <math>Y \sim \mathrm{Gompertz}</math>, then <math>X = \exp(Y) \sim \mathrm{Weibull}^{-1}</math>, and hence <math>\exp(-Y) \sim \mathrm{Weibull}</math>.<ref>{{cite book|last1=Kleiber|first1=Christian|last2=Kotz|first2=Samuel|date=2003|title=Statistical Size Distributions in Economics and Actuarial Sciences|url=https://onlinelibrary.wiley.com/doi/book/10.1002/0471457175|publisher=Wiley|page=179|isbn=9780471150640|doi=10.1002/0471457175}}</ref>

== Applications ==
* In ] the Gompertz distribution is applied to extreme events such as annual maximum one-day rainfalls and river discharges. The blue picture illustrates an example of fitting the Gompertz distribution to ranked annually maximum one-day rainfalls showing also the 90% ] based on the ]. The rainfall data are represented by ]s as part of the ].


== See also == == See also ==
*]
*] *]
*]
*] *]
*] *]


==Notes==
{{ProbDistributions|continuous-semi-infinite}}
{{Reflist|refs=


<ref name=BG>{{cite journal
]
| last=Bemmaor | first=Albert C. |author2=Glady, Nicolas
| title=Modeling Purchasing Behavior With Sudden 'Death': A Flexible Customer Lifetime Model
| volume = 58 | issue=5 | pages = 1012–1021
| journal=Management Science | year=2012 | doi=10.1287/mnsc.1110.1461}}</ref>
<ref name=Vaupel1986>{{cite journal
|last=Vaupel | first=James W.
|title=How change in age-specific mortality affects life expectancy
|volume=40 | issue=1 | pages=147–157
|journal=Population Studies
|year=1986 | doi=10.1080/0032472031000141896| pmid=11611920
| url=http://pure.iiasa.ac.at/id/eprint/2683/1/WP-85-017.pdf
}}</ref>
<ref name=Preston2001>{{cite book
|last=Preston | first=Samuel H. |author2=Heuveline, Patrick |author3=Guillot, Michel
|title=Demography:measuring and modeling population processes
|publisher=Blackwell | location=Oxford
|year=2001}}</ref>
<ref name=Benjamin1980>{{cite book
|last=Benjamin | first=Bernard |author2=Haycocks, H.W. |author3=Pollard, J.
|title=The Analysis of Mortality and Other Actuarial Statistics
|publisher=Heinemann | location=London
|year=1980}}</ref>
<ref name=Willemse2000>{{cite journal
|last=Willemse | first=W. J. |author2=Koppelaar, H.
|title=Knowledge elicitation of Gompertz' law of mortality
|journal=Scandinavian Actuarial Journal | volume=2000 |issue=2 | pages=168–179
|year=2000| doi=10.1080/034612300750066845 | s2cid=122719776 }}</ref>
<ref name=Brown1974>{{cite journal
|last=Brown | first=K. |author2=Forbes, W.
|title=A mathematical model of aging processes
|journal=Journal of Gerontology |volume=29 | issue=1 | pages=46–51
|year=1974 | doi=10.1093/geronj/29.1.46| pmid=4809664 }}</ref>
<ref name=Economos1982>{{cite journal
|last=Economos | first=A.
|title=Rate of aging, rate of dying and the mechanism of mortality
|journal=Archives of Gerontology and Geriatrics
|volume=1 | issue=1 | pages=46–51
|year=1982| doi=10.1016/0167-4943(82)90003-6
| pmid=6821142
}}</ref>
<ref name=Ohishi2009>{{cite journal
|last=Ohishi |first=K. |author2=Okamura, H. |author3=Dohi, T.
|title=Gompertz software reliability model: estimation algorithm and empirical validation
|journal=Journal of Systems and Software
|volume=82 | issue=3 | pages=535–543
|year=2009 |doi=10.1016/j.jss.2008.11.840|url=http://ir.lib.hiroshima-u.ac.jp/00027703 }}</ref>
}}


==References== ==References==
*{{cite web|last1=Bemmaor|first1=Albert C.|last2=Glady|first2=Nicolas|year=2011|title=Implementing the Gamma/Gompertz/NBD Model in MATLAB|url=http://dl.dropbox.com/u/7097708/gg_nbd_MATLAB.pdf|publisher=ESSEC Business School|location=Cergy-Pontoise}}{{Dead link|date=December 2019 |bot=InternetArchiveBot |fix-attempted=yes }}
*{{cite journal|last=Bemmaor|first=Albert C.|coauthors=Glady, Nicolas|title=Modeling Purchasing Behavior With Sudden 'Death': A Flexible Customer Lifetime Model|url= http://mansci.journal.informs.org/content/early/2011/12/02/mnsc.1110.1461.abstract|journal=Management Science|year=2011|volume=Articles in Advance|doi=http://dx.doi.org/10.1287/mnsc.1110.1461}}
*{{Cite journal | last1=Gompertz | first=B. | author-link = Benjamin Gompertz | year= 1825 |pages=513–583| title=On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies | journal =Philosophical Transactions of the Royal Society of London|
*{{cite web|last=Bemmaor|first=Albert C. |last2=Glady|first2=Nicolas| year = 2011 |title=Implementing the Gamma/Gompertz/NBD Model in MATLAB|url=http://dl.dropbox.com/u/7097708/gg_nbd_MATLAB.pdf| publisher = ESSEC Business School|place = Cergy-Pontoise }}
volume = 115 |jstor=107756 | doi=10.1098/rstl.1825.0026| s2cid=145157003 | url=https://zenodo.org/record/1432356 | doi-access=free }}
*{{Cite journal | surname=Gompertz | given=B. | year= 1825 |pages=513–583| title=On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies | journal =Philos. Trans. Roy. Soc. | place=London|volume = 115| }}
*{{Cite book
*{{Cite journal | surname=Johnson | given=Norman L.| | surname2=Kotz | given2=Samuel| surname3=Balakrishnan | given3=N. |year= 1995 | title=Continuous Univariate Distributions |volume=2 |edition=2nd| publisher=John Wiley & Sons | place=New York }}
| last1=Johnson | first1=Norman L. | last2=Kotz | first2=Samuel
*{{cite journal|last=Sheikh|first=A. K.|coauthors=Boah, J. K.; Younas, M. |title=Truncated extreme value model for pipeline reliability|journal=Reliability, Engrg. System Safety|year=1989|volume = 25|issue=1|pages=1–14}}
| last3=Balakrishnan | first3=N. | year= 1995
<references />
| title=Continuous Univariate Distributions | volume=2
| edition=2nd | publisher=John Wiley & Sons | location=New York
| isbn=0-471-58494-0 | pages=25&ndash;26}}
*{{cite journal|last=Sheikh|first=A. K.|author2=Boah, J. K. |author3=Younas, M. |title=Truncated Extreme Value Model for Pipeline Reliability|journal=Reliability Engineering and System Safety|year=1989|volume = 25|issue=1|pages=1–14 |doi=10.1016/0951-8320(89)90020-3}}

{{ProbDistributions|continuous-semi-infinite}}

]
]
]

Latest revision as of 08:13, 3 June 2024

Continuous probability distribution, named after Benjamin Gompertz
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (December 2011) (Learn how and when to remove this message)
Gompertz distribution
Probability density function
Cumulative distribution function
Parameters shape η > 0 {\displaystyle \eta >0\,\!} , scale b > 0 {\displaystyle b>0\,\!}
Support x [ 0 , ) {\displaystyle x\in [0,\infty )\!}
PDF b η exp ( η + b x η e b x ) {\displaystyle b\eta \exp \left(\eta +bx-\eta e^{bx}\right)}
CDF 1 exp ( η ( e b x 1 ) ) {\displaystyle 1-\exp \left(-\eta \left(e^{bx}-1\right)\right)}
Quantile 1 b ln ( 1 1 η ln ( 1 u ) ) {\displaystyle {\frac {1}{b}}\ln \left(1-{\frac {1}{\eta }}\ln(1-u)\right)}
Mean ( 1 / b ) e η Ei ( η ) {\displaystyle (1/b)e^{\eta }{\text{Ei}}\left(-\eta \right)}
where Ei ( z ) = z ( e v / v ) d v {\displaystyle {\text{where Ei}}\left(z\right)=\int \limits _{-z}^{\infty }\left(e^{-v}/v\right)dv}
Median ( 1 / b ) ln [ ( 1 / η ) ln ( 1 / 2 ) + 1 ] {\displaystyle \left(1/b\right)\ln \left}
Mode = ( 1 / b ) ln ( 1 / η )   {\displaystyle =\left(1/b\right)\ln \left(1/\eta \right)\ }
with  0 < F ( x ) < 1 e 1 = 0.632121 , 0 < η < 1 {\displaystyle {\text{with }}0<{\text{F}}\left(x^{*}\right)<1-e^{-1}=0.632121,0<\eta <1}
= 0 , η 1 {\displaystyle =0,\quad \eta \geq 1}
Variance ( 1 / b ) 2 e η { 2 η   3 F 3 ( 1 , 1 , 1 ; 2 , 2 , 2 ; η ) + γ 2 {\displaystyle \left(1/b\right)^{2}e^{\eta }\{-2\eta {\ }_{3}{\text{F}}_{3}\left(1,1,1;2,2,2;\eta \right)+\gamma ^{2}} + ( π 2 / 6 ) + 2 γ ln ( η ) + [ ln ( η ) ] 2 e η [ Ei ( η ) ] 2 } {\displaystyle +\left(\pi ^{2}/6\right)+2\gamma \ln \left(\eta \right)+^{2}-e^{\eta }^{2}\}}
 where  γ  is the Euler constant:  γ = ψ ( 1 ) = 0.577215...  {\displaystyle {\begin{aligned}{\text{ where }}&\gamma {\text{ is the Euler constant: }}\,\!\\&\gamma =-\psi \left(1\right)={\text{0.577215... }}\end{aligned}}}  and  3 F 3 ( 1 , 1 , 1 ; 2 , 2 , 2 ; z ) = k = 0 [ 1 / ( k + 1 ) 3 ] ( 1 ) k ( z k / k ! ) {\displaystyle {\begin{aligned}{\text{ and }}{}_{3}{\text{F}}_{3}&\left(1,1,1;2,2,2;-z\right)=\\&\sum _{k=0}^{\infty }\left\left(-1\right)^{k}\left(z^{k}/k!\right)\end{aligned}}}
MGF E ( e t x ) = η e η E t / b ( η ) {\displaystyle {\text{E}}\left(e^{-tx}\right)=\eta e^{\eta }{\text{E}}_{t/b}\left(\eta \right)}
with E t / b ( η ) = 1 e η v v t / b d v ,   t > 0 {\displaystyle {\text{with E}}_{t/b}\left(\eta \right)=\int _{1}^{\infty }e^{-\eta v}v^{-t/b}dv,\ t>0}

In probability and statistics, the Gompertz distribution is a continuous probability distribution, named after Benjamin Gompertz. The Gompertz distribution is often applied to describe the distribution of adult lifespans by demographers and actuaries. Related fields of science such as biology and gerontology also considered the Gompertz distribution for the analysis of survival. More recently, computer scientists have also started to model the failure rates of computer code by the Gompertz distribution. In Marketing Science, it has been used as an individual-level simulation for customer lifetime value modeling. In network theory, particularly the Erdős–Rényi model, the walk length of a random self-avoiding walk (SAW) is distributed according to the Gompertz distribution.

Specification

Probability density function

The probability density function of the Gompertz distribution is:

f ( x ; η , b ) = b η exp ( η + b x η e b x ) for  x 0 , {\displaystyle f\left(x;\eta ,b\right)=b\eta \exp \left(\eta +bx-\eta e^{bx}\right){\text{for }}x\geq 0,\,}

where b > 0 {\displaystyle b>0\,\!} is the scale parameter and η > 0 {\displaystyle \eta >0\,\!} is the shape parameter of the Gompertz distribution. In the actuarial and biological sciences and in demography, the Gompertz distribution is parametrized slightly differently (Gompertz–Makeham law of mortality).

Cumulative distribution function

The cumulative distribution function of the Gompertz distribution is:

F ( x ; η , b ) = 1 exp ( η ( e b x 1 ) ) , {\displaystyle F\left(x;\eta ,b\right)=1-\exp \left(-\eta \left(e^{bx}-1\right)\right),}

where η , b > 0 , {\displaystyle \eta ,b>0,} and x 0 . {\displaystyle x\geq 0\,.}

Moment generating function

The moment generating function is:

E ( e t X ) = η e η E t / b ( η ) {\displaystyle {\text{E}}\left(e^{-tX}\right)=\eta e^{\eta }{\text{E}}_{t/b}\left(\eta \right)}

where

E t / b ( η ) = 1 e η v v t / b d v ,   t > 0. {\displaystyle {\text{E}}_{t/b}\left(\eta \right)=\int _{1}^{\infty }e^{-\eta v}v^{-t/b}dv,\ t>0.}

Properties

The Gompertz distribution is a flexible distribution that can be skewed to the right and to the left. Its hazard function h ( x ) = η b e b x {\displaystyle h(x)=\eta be^{bx}} is a convex function of F ( x ; η , b ) {\displaystyle F\left(x;\eta ,b\right)} . The model can be fitted into the innovation-imitation paradigm with p = η b {\displaystyle p=\eta b} as the coefficient of innovation and b {\displaystyle b} as the coefficient of imitation. When t {\displaystyle t} becomes large, z ( t ) {\displaystyle z(t)} approaches {\displaystyle \infty } . The model can also belong to the propensity-to-adopt paradigm with η {\displaystyle \eta } as the propensity to adopt and b {\displaystyle b} as the overall appeal of the new offering.

Shapes

The Gompertz density function can take on different shapes depending on the values of the shape parameter η {\displaystyle \eta \,\!} :

  • When η 1 , {\displaystyle \eta \geq 1,\,} the probability density function has its mode at 0.
  • When 0 < η < 1 , {\displaystyle 0<\eta <1,\,} the probability density function has its mode at
x = ( 1 / b ) ln ( 1 / η ) with  0 < F ( x ) < 1 e 1 = 0.632121 {\displaystyle x^{*}=\left(1/b\right)\ln \left(1/\eta \right){\text{with }}0<F\left(x^{*}\right)<1-e^{-1}=0.632121}

Kullback-Leibler divergence

If f 1 {\displaystyle f_{1}} and f 2 {\displaystyle f_{2}} are the probability density functions of two Gompertz distributions, then their Kullback-Leibler divergence is given by

D K L ( f 1 f 2 ) = 0 f 1 ( x ; b 1 , η 1 ) ln f 1 ( x ; b 1 , η 1 ) f 2 ( x ; b 2 , η 2 ) d x = ln e η 1 b 1 η 1 e η 2 b 2 η 2 + e η 1 [ ( b 2 b 1 1 ) Ei ( η 1 ) + η 2 η 1 b 2 b 1 Γ ( b 2 b 1 + 1 , η 1 ) ] ( η 1 + 1 ) {\displaystyle {\begin{aligned}D_{KL}(f_{1}\parallel f_{2})&=\int _{0}^{\infty }f_{1}(x;b_{1},\eta _{1})\,\ln {\frac {f_{1}(x;b_{1},\eta _{1})}{f_{2}(x;b_{2},\eta _{2})}}dx\\&=\ln {\frac {e^{\eta _{1}}\,b_{1}\,\eta _{1}}{e^{\eta _{2}}\,b_{2}\,\eta _{2}}}+e^{\eta _{1}}\left-(\eta _{1}+1)\end{aligned}}}

where Ei ( ) {\displaystyle \operatorname {Ei} (\cdot )} denotes the exponential integral and Γ ( , ) {\displaystyle \Gamma (\cdot ,\cdot )} is the upper incomplete gamma function.

Related distributions

  • If X is defined to be the result of sampling from a Gumbel distribution until a negative value Y is produced, and setting X=−Y, then X has a Gompertz distribution.
  • The gamma distribution is a natural conjugate prior to a Gompertz likelihood with known scale parameter b . {\displaystyle b\,\!.}
  • When η {\displaystyle \eta \,\!} varies according to a gamma distribution with shape parameter α {\displaystyle \alpha \,\!} and scale parameter β {\displaystyle \beta \,\!} (mean = α / β {\displaystyle \alpha /\beta \,\!} ), the distribution of x {\displaystyle x} is Gamma/Gompertz.
Gompertz distribution fitted to maximum monthly 1-day rainfalls
  • If Y G o m p e r t z {\displaystyle Y\sim \mathrm {Gompertz} } , then X = exp ( Y ) W e i b u l l 1 {\displaystyle X=\exp(Y)\sim \mathrm {Weibull} ^{-1}} , and hence exp ( Y ) W e i b u l l {\displaystyle \exp(-Y)\sim \mathrm {Weibull} } .

Applications

See also

Notes

  1. Vaupel, James W. (1986). "How change in age-specific mortality affects life expectancy" (PDF). Population Studies. 40 (1): 147–157. doi:10.1080/0032472031000141896. PMID 11611920.
  2. Preston, Samuel H.; Heuveline, Patrick; Guillot, Michel (2001). Demography:measuring and modeling population processes. Oxford: Blackwell.
  3. Benjamin, Bernard; Haycocks, H.W.; Pollard, J. (1980). The Analysis of Mortality and Other Actuarial Statistics. London: Heinemann.
  4. Willemse, W. J.; Koppelaar, H. (2000). "Knowledge elicitation of Gompertz' law of mortality". Scandinavian Actuarial Journal. 2000 (2): 168–179. doi:10.1080/034612300750066845. S2CID 122719776.
  5. Economos, A. (1982). "Rate of aging, rate of dying and the mechanism of mortality". Archives of Gerontology and Geriatrics. 1 (1): 46–51. doi:10.1016/0167-4943(82)90003-6. PMID 6821142.
  6. Brown, K.; Forbes, W. (1974). "A mathematical model of aging processes". Journal of Gerontology. 29 (1): 46–51. doi:10.1093/geronj/29.1.46. PMID 4809664.
  7. Ohishi, K.; Okamura, H.; Dohi, T. (2009). "Gompertz software reliability model: estimation algorithm and empirical validation". Journal of Systems and Software. 82 (3): 535–543. doi:10.1016/j.jss.2008.11.840.
  8. ^ Bemmaor, Albert C.; Glady, Nicolas (2012). "Modeling Purchasing Behavior With Sudden 'Death': A Flexible Customer Lifetime Model". Management Science. 58 (5): 1012–1021. doi:10.1287/mnsc.1110.1461.
  9. Tishby, Biham, Katzav (2016), The distribution of path lengths of self avoiding walks on Erdős-Rényi networks, arXiv:1603.06613.
  10. Bauckhage, C. (2014), Characterizations and Kullback-Leibler Divergence of Gompertz Distributions, arXiv:1402.3193.
  11. Calculator for probability distribution fitting
  12. Kleiber, Christian; Kotz, Samuel (2003). Statistical Size Distributions in Economics and Actuarial Sciences. Wiley. p. 179. doi:10.1002/0471457175. ISBN 9780471150640.

References

Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories: