Misplaced Pages

11-Hydroxy-THC: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 02:23, 5 January 2023 editSativa Inflorescence (talk | contribs)Extended confirmed users524 editsm Undid revision 1131637392 by Sativa Inflorescence (talk) line break errorTag: Undo← Previous edit Revision as of 18:44, 24 January 2023 edit undoGettinglit (talk | contribs)Extended confirmed users1,005 edits Undid revision 1131634740 by Sativa Inflorescence there is no valid reason to remove it.Next edit →
Line 40: Line 40:
}} }}


'''11-Hydroxy-Δ<sup>9</sup>-tetrahydrocannabinol''' ('''11-OH-Δ<sup>9</sup>-THC''', alternatively numbered as '''7-OH-Δ<sup>1</sup>-THC'''), usually referred to as '''11-hydroxy-THC''', is the main active ] of ] (THC).<ref name=Kraemer2007>{{cite journal | vauthors = Kraemer T, Paul LD | title = Bioanalytical procedures for determination of drugs of abuse in blood | journal = Analytical and Bioanalytical Chemistry | volume = 388 | issue = 7 | pages = 1415–1435 | date = August 2007 | pmid = 17468860 | doi = 10.1007/s00216-007-1271-6 | s2cid = 32917584 }}</ref><ref name=Huestis2005>{{cite journal | vauthors = Huestis MA | title = Pharmacokinetics and metabolism of the plant cannabinoids, delta9-tetrahydrocannabinol, cannabidiol and cannabinol | journal = Handbook of Experimental Pharmacology | volume = 168 | issue = 168 | pages = 657–690 | date = 2005 | pmid = 16596792 | doi = 10.1007/3-540-26573-2_23 | isbn = 3-540-22565-X }}</ref> '''11-Hydroxy-Δ<sup>9</sup>-tetrahydrocannabinol''' ('''11-OH-Δ<sup>9</sup>-THC''', alternatively numbered as '''7-OH-Δ<sup>1</sup>-THC'''), usually referred to as '''11-hydroxy-THC''', is the main active ] of ] (THC), which is formed in the body after THC is consumed.<ref name=Kraemer2007>{{cite journal | vauthors = Kraemer T, Paul LD | title = Bioanalytical procedures for determination of drugs of abuse in blood | journal = Analytical and Bioanalytical Chemistry | volume = 388 | issue = 7 | pages = 1415–1435 | date = August 2007 | pmid = 17468860 | doi = 10.1007/s00216-007-1271-6 | s2cid = 32917584 }}</ref><ref name=Huestis2005>{{cite journal | vauthors = Huestis MA | title = Pharmacokinetics and metabolism of the plant cannabinoids, delta9-tetrahydrocannabinol, cannabidiol and cannabinol | journal = Handbook of Experimental Pharmacology | volume = 168 | issue = 168 | pages = 657–690 | date = 2005 | pmid = 16596792 | doi = 10.1007/3-540-26573-2_23 | isbn = 3-540-22565-X }}</ref>


After ], THC is ] inside the body by ] enzymes such as ] and ] into 11-hydroxy-THC and then further metabolized by the ] and ] enzyme to form ] (THC-COOH) which is inactive at the CB1 receptors;<ref name=Huestis2005/> and further ] to form 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid glucuronide (delta-9-THC-COOH-glu)<ref name="Stout_2014">{{cite journal | vauthors = Stout SM, Cimino NM | title = Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review | journal = Drug Metabolism Reviews | volume = 46 | issue = 1 | pages = 86–95 | date = February 2014 | pmid = 24160757 | doi = 10.3109/03602532.2013.849268 | s2cid = 29133059 | url = https://zenodo.org/record/1093138 }}</ref> where it is excreted in both feces and urine.<ref name="Grotenhermen_2003">{{cite journal | vauthors = Grotenhermen F | title = Pharmacokinetics and pharmacodynamics of cannabinoids | journal = Clinical Pharmacokinetics | volume = 42 | issue = 4 | pages = 327–360 | date = 2003 | pmid = 12648025 | doi = 10.2165/00003088-200342040-00003 | s2cid = 25623600 }}</ref> Both compounds, along with THC, can be assayed in drug tests.<ref name=Kraemer2007/> After ], THC is ] inside the body by ] enzymes such as ] and ] into 11-hydroxy-THC and then further metabolized by the ] and ] enzyme to form ] (THC-COOH) which is inactive at the CB1 receptors;<ref name=Huestis2005/> and further ] to form 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid glucuronide (delta-9-THC-COOH-glu)<ref name="Stout_2014">{{cite journal | vauthors = Stout SM, Cimino NM | title = Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review | journal = Drug Metabolism Reviews | volume = 46 | issue = 1 | pages = 86–95 | date = February 2014 | pmid = 24160757 | doi = 10.3109/03602532.2013.849268 | s2cid = 29133059 | url = https://zenodo.org/record/1093138 }}</ref> where it is excreted in both feces and urine.<ref name="Grotenhermen_2003">{{cite journal | vauthors = Grotenhermen F | title = Pharmacokinetics and pharmacodynamics of cannabinoids | journal = Clinical Pharmacokinetics | volume = 42 | issue = 4 | pages = 327–360 | date = 2003 | pmid = 12648025 | doi = 10.2165/00003088-200342040-00003 | s2cid = 25623600 }}</ref> Both compounds, along with THC, can be assayed in drug tests.<ref name=Kraemer2007/>


11-hydroxy-THC can be formed after consumption of THC from inhalation (vaping, smoking) and oral (by mouth, edible, sublingual) use, although levels of 11-hydroxy-THC are typically higher when eaten compared to inhalation.<ref name="Huestis_1992">{{cite journal | vauthors = Huestis MA, Henningfield JE, Cone EJ | title = Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana | journal = Journal of Analytical Toxicology | volume = 16 | issue = 5 | pages = 276–282 | date = 1992 | pmid = 1338215 | doi = 10.1093/jat/16.5.276 }}</ref><ref name="Karschner_2009">{{cite journal | vauthors = Karschner EL, Schwilke EW, Lowe RH, Darwin WD, Herning RI, Cadet JL, Huestis MA | title = Implications of plasma Delta9-tetrahydrocannabinol, 11-hydroxy-THC, and 11-nor-9-carboxy-THC concentrations in chronic cannabis smokers | journal = Journal of Analytical Toxicology | volume = 33 | issue = 8 | pages = 469–477 | date = October 2009 | pmid = 19874654 | pmc = 3159863 | doi = 10.1093/jat/33.8.469 }}</ref>
THC administered orally results in higher 11-OH-THC plasma concentration compared to smoking. <ref name="pertwee">{{cite book |last=Pertwee |first=Robert|date=2005 |title=Cannabinoids Handbook of Experimental Pharmacology volume 168|url= |location=Germany |publisher=Springer |page=667 |isbn=3-540-22565-X}}</ref>

== Pharmacology ==
In an analysis by the ] on ] it was found that 11-OH-D9-THC had the 3rd highest ] inhibitor activity against ] out of all the cannabinoids tested within that study but not as high as the ] ] (56% 11-OH-D9-THC) vs 100% GC376). <ref>https://www.mdpi.com/1420-3049/27/18/6127</ref>


== See also == == See also ==

Revision as of 18:44, 24 January 2023

Chemical compound Pharmaceutical compound
11-Hydroxy-THC
11-Hydroxy-THC molecule
Clinical data
Drug classCannabinoid
Legal status
Legal status
Identifiers
IUPAC name
  • (6aR,10aR)-9-(Hydroxymethyl)-6,6-dimethyl-3-pentyl- 6a,7,8,10a-tetrahydro-6H-benzochromen-1-ol
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
ECHA InfoCard100.164.583 Edit this at Wikidata
Chemical and physical data
FormulaC21H30O3
Molar mass330.468 g·mol
3D model (JSmol)
SMILES
  • Oc2cc(cc1OC(C3CC/C(=C\C3c12)CO)(C)C)CCCCC
InChI
  • InChI=1S/C21H30O3/c1-4-5-6-7-14-11-18(23)20-16-10-15(13-22)8-9-17(16)21(2,3)24-19(20)12-14/h10-12,16-17,22-23H,4-9,13H2,1-3H3
  • Key:YCBKSSAWEUDACY-UHFFFAOYSA-N
  (what is this?)  (verify)

11-Hydroxy-Δ-tetrahydrocannabinol (11-OH-Δ-THC, alternatively numbered as 7-OH-Δ-THC), usually referred to as 11-hydroxy-THC, is the main active metabolite of tetrahydrocannabinol (THC), which is formed in the body after THC is consumed.

After cannabis consumption, THC is metabolized inside the body by cytochrome P450 enzymes such as CYP2C9 and CYP3A4 into 11-hydroxy-THC and then further metabolized by the dehydrogenase and CYP2C9 enzyme to form 11-nor-9-carboxy-THC (THC-COOH) which is inactive at the CB1 receptors; and further glucuronidated to form 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid glucuronide (delta-9-THC-COOH-glu) where it is excreted in both feces and urine. Both compounds, along with THC, can be assayed in drug tests.

11-hydroxy-THC can be formed after consumption of THC from inhalation (vaping, smoking) and oral (by mouth, edible, sublingual) use, although levels of 11-hydroxy-THC are typically higher when eaten compared to inhalation.

Pharmacology

In an analysis by the University of Rhode Island on cannabinoids it was found that 11-OH-D9-THC had the 3rd highest 3C-like protease inhibitor activity against COVID-19 out of all the cannabinoids tested within that study but not as high as the antiviral drug GC376 (56% 11-OH-D9-THC) vs 100% GC376).

See also

References

  1. ^ Kraemer T, Paul LD (August 2007). "Bioanalytical procedures for determination of drugs of abuse in blood". Analytical and Bioanalytical Chemistry. 388 (7): 1415–1435. doi:10.1007/s00216-007-1271-6. PMID 17468860. S2CID 32917584.
  2. ^ Huestis MA (2005). "Pharmacokinetics and metabolism of the plant cannabinoids, delta9-tetrahydrocannabinol, cannabidiol and cannabinol". Handbook of Experimental Pharmacology. 168 (168): 657–690. doi:10.1007/3-540-26573-2_23. ISBN 3-540-22565-X. PMID 16596792.
  3. Stout SM, Cimino NM (February 2014). "Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review". Drug Metabolism Reviews. 46 (1): 86–95. doi:10.3109/03602532.2013.849268. PMID 24160757. S2CID 29133059.
  4. Grotenhermen F (2003). "Pharmacokinetics and pharmacodynamics of cannabinoids". Clinical Pharmacokinetics. 42 (4): 327–360. doi:10.2165/00003088-200342040-00003. PMID 12648025. S2CID 25623600.
  5. Huestis MA, Henningfield JE, Cone EJ (1992). "Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana". Journal of Analytical Toxicology. 16 (5): 276–282. doi:10.1093/jat/16.5.276. PMID 1338215.
  6. Karschner EL, Schwilke EW, Lowe RH, Darwin WD, Herning RI, Cadet JL, Huestis MA (October 2009). "Implications of plasma Delta9-tetrahydrocannabinol, 11-hydroxy-THC, and 11-nor-9-carboxy-THC concentrations in chronic cannabis smokers". Journal of Analytical Toxicology. 33 (8): 469–477. doi:10.1093/jat/33.8.469. PMC 3159863. PMID 19874654.
  7. https://www.mdpi.com/1420-3049/27/18/6127
Cannabinoids
Phytocannabinoids
(comparison)
Cannabibutols
Cannabichromenes
Cannabicyclols
Cannabidiols
Cannabielsoins
Cannabigerols
Cannabiphorols
Cannabinols
Cannabitriols
Cannabivarins
Delta-8-tetrahydrocannabinols
Delta-9-tetrahydrocannabinols
Delta-10-Tetrahydrocannabinols
Miscellaneous cannabinoids
Active metabolites
Endocannabinoids
Synthetic
cannabinoid
receptor
agonists /
neocannabinoids
Classical cannabinoids
(dibenzopyrans)
Non-classical
cannabinoids
Adamantoylindoles
Benzimidazoles
Benzoylindoles
Cyclohexylphenols
Eicosanoids
Indazole-3-
carboxamides
Indole-3-carboxamides
Indole-3-carboxylates
Naphthoylindazoles
Naphthoylindoles
Naphthoylpyrroles
Naphthylmethylindenes
Naphthylmethylindoles
Phenylacetylindoles
Pyrazolecarboxamides
Tetramethylcyclo-
propanoylindazoles
Tetramethylcyclo-
propanoylindoles
Others
Allosteric CBRTooltip Cannabinoid receptor ligands
Endocannabinoid
enhancers

(inactivation inhibitors)
Anticannabinoids
(antagonists/inverse
agonists/antibodies)
Cannabinoid receptor modulators
Receptor
(ligands)
CB1Tooltip Cannabinoid receptor type 1
Agonists
(abridged,
full list)
Inverse agonists
Antagonists
CB2Tooltip Cannabinoid receptor type 2
Agonists
Antagonists
NAGly
(GPR18)
Agonists
Antagonists
GPR55
Agonists
Antagonists
GPR119
Agonists
Transporter
(modulators)
eCBTsTooltip Endocannabinoid transporter
Enzyme
(modulators)
FAAHTooltip Fatty acid amide hydrolase
MAGL
ABHD6
ABHD12
Others
  • Others: 2-PG (directly potentiates activity of 2-AG at CB1 receptor)
  • ARN-272 (FAAH-like anandamide transporter inhibitor)
See also
Receptor/signaling modulators
Cannabinoids (cannabinoids by structure)
Categories: