Misplaced Pages

Lithium hydroxide: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 01:54, 25 April 2024 editComp.arch (talk | contribs)Extended confirmed users40,352 editsmNo edit summaryTag: 2017 wikitext editor← Previous edit Latest revision as of 12:21, 25 August 2024 edit undoM97uzivatel (talk | contribs)Extended confirmed users6,582 edits top: hygroscopic is not appearance 
Line 25: Line 25:
| InChI = 1/Li.H2O/h;1H2/q+1;/p-1 | InChI = 1/Li.H2O/h;1H2/q+1;/p-1
| InChIKey = WMFOQBRAJBCJND-REWHXWO | InChIKey = WMFOQBRAJBCJND-REWHXWO

| ChEBI = 33979 | ChEBI = 33979
| SMILES = . | SMILES = .
Line 46: Line 45:
| Formula = LiOH | Formula = LiOH
| MolarMass = {{ubl|23.95 g/mol (anhydrous)|41.96 g/mol (monohydrate)}} | MolarMass = {{ubl|23.95 g/mol (anhydrous)|41.96 g/mol (monohydrate)}}
| Appearance = ] white solid | Appearance = white solid
| Density = {{ubl|1.46 g/cm<sup>3</sup> (anhydrous)|1.51 g/cm<sup>3</sup> (monohydrate)}} | Density = {{ubl|1.46 g/cm<sup>3</sup> (anhydrous)|1.51 g/cm<sup>3</sup> (monohydrate)}}
| MeltingPtC = 462 | MeltingPtC = 462
Line 72: Line 71:
| DeltaHcombust = | DeltaHcombust =
| DeltaHfus = 20.9&nbsp;kJ/mol (at melting point) | DeltaHfus = 20.9&nbsp;kJ/mol (at melting point)
| DeltaHvap =
| DeltaHsublim =
| HHV =
| LHV =
}} }}
|Section5 = {{Chembox Hazards |Section5 = {{Chembox Hazards

Latest revision as of 12:21, 25 August 2024

Lithium hydroxide
Lithium hydroxide

  Li       O       H
Lithium-hydroxide.jpg
Names
IUPAC name Lithium hydroxide
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.013.804 Edit this at Wikidata
Gmelin Reference 68415
PubChem CID
RTECS number
  • OJ6307070
UNII
UN number 2680
CompTox Dashboard (EPA)
InChI
  • InChI=1S/Li.H2O/h;1H2/q+1;/p-1Key: WMFOQBRAJBCJND-UHFFFAOYSA-M
  • InChI=1/Li.H2O/h;1H2/q+1;/p-1Key: WMFOQBRAJBCJND-REWHXWO
SMILES
  • .
Properties
Chemical formula LiOH
Molar mass
  • 23.95 g/mol (anhydrous)
  • 41.96 g/mol (monohydrate)
Appearance white solid
Odor none
Density
  • 1.46 g/cm (anhydrous)
  • 1.51 g/cm (monohydrate)
Melting point 462 °C (864 °F; 735 K)
Boiling point 924 °C (1,695 °F; 1,197 K) (decomposes)
Solubility in water
  • anhydrous:
  • 12.7 g/(100 mL) (0 °C)
  • 12.8 g/(100 mL) (20 °C)
  • 17.5 g/(100 mL) (100 °C)

  • monohydrate:
  • 22.3 g/(100 mL) (10 °C)
  • 26.8 g/(100 mL) (80 °C)
Solubility in methanol
  • 9.76 g/(100 g) (anhydrous; 20 °C, 48 hours mixing)
  • 13.69 g/(100 g) (monohydrate; 20 °C, 48 hours mixing)
Solubility in ethanol
  • 2.36 g/(100 g) (anhydrous; 20 °C, 48 hours mixing)
  • 2.18 g/(100 g) (monohydrate; 20 °C, 48 hours mixing)
Solubility in isopropanol
  • 0 g/(100 g) (anhydrous; 20 °C, 48 hours mixing)
  • 0.11 g/(100 g) (monohydrate; 20 °C, 48 hours mixing)
Acidity (pKa) 14.4
Conjugate base Lithium monoxide anion
Magnetic susceptibility (χ) −12.3·10 cm/mol
Refractive index (nD)
  • 1.464 (anhydrous)
  • 1.460 (monohydrate)
Dipole moment 4.754 D
Thermochemistry
Heat capacity (C) 49.6 J/(mol·K)
Std molar
entropy
(S298)
42.8 J/(mol·K)
Std enthalpy of
formation
fH298)
−487.5 kJ/mol
Gibbs free energyfG) −441.5 kJ/mol
Enthalpy of fusionfHfus) 20.9 kJ/mol (at melting point)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Corrosive
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3 0 0
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
LD50 (median dose) 210 mg/kg (oral, rat)
Safety data sheet (SDS) "ICSC 0913".
"ICSC 0914". (monohydrate)
Related compounds
Other anions Lithium amide
Other cations
Related compounds Lithium oxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Lithium hydroxide is an inorganic compound with the formula LiOH. It can exist as anhydrous or hydrated, and both forms are white hygroscopic solids. They are soluble in water and slightly soluble in ethanol. Both are available commercially. While classified as a strong base, lithium hydroxide is the weakest known alkali metal hydroxide.

Production

The preferred feedstock is hard-rock spodumene, where the lithium content is expressed as % lithium oxide.

Lithium carbonate route

Lithium hydroxide is often produced industrially from lithium carbonate in a metathesis reaction with calcium hydroxide:

Li2CO3 + Ca(OH)2 → 2 LiOH + CaCO3

The initially produced hydrate is dehydrated by heating under vacuum up to 180 °C.

Lithium sulfate route

An alternative route involves the intermediacy of lithium sulfate:

α-spodumene → β-spodumene
β-spodumene + CaO → Li2O + ...
Li2O + H2SO4 → Li2SO4 + H2O
Li2SO4 + 2 NaOH → Na2SO4 + 2 LiOH

The main by-products are gypsum and sodium sulphate, which have some market value.

Commercial setting

According to Bloomberg, Ganfeng Lithium Co. Ltd. (GFL or Ganfeng) and Albemarle were the largest producers in 2020 with around 25kt/y, followed by Livent Corporation (FMC) and SQM. Significant new capacity is planned, to keep pace with demand driven by vehicle electrification. Ganfeng are to expand lithium chemical capacity to 85,000 tons, adding the capacity leased from Jiangte, Ganfeng will become the largest lithium hydroxide producer globally in 2021.

Albemarle's Kemerton WA plant, originally planned to deliver 100kt/y has been scaled back to 50kt/y.

In 2020 Tianqi Lithium's, plant in Kwinana, Western Australia is the largest producer, with a capacity of 48kt/y.

Applications

Lithium-ion batteries

Lithium hydroxide is mainly consumed in the production of cathode materials for lithium-ion batteries such as lithium cobalt oxide (LiCoO2) and lithium iron phosphate. It is preferred over lithium carbonate as a precursor for lithium nickel manganese cobalt oxides.

Grease

A popular lithium grease thickener is lithium 12-hydroxystearate, which produces a general-purpose lubricating grease due to its high resistance to water and usefulness at a range of temperatures.

Carbon dioxide scrubbing

Main article: Carbon dioxide scrubber

Lithium hydroxide is used in breathing gas purification systems for spacecraft, submarines, and rebreathers to remove carbon dioxide from exhaled gas by producing lithium carbonate and water:

2 LiOH·H2O + CO2 → Li2CO3 + 3 H2O

or

2 LiOH + CO2 → Li2CO3 + H2O

The latter, anhydrous hydroxide, is preferred for its lower mass and lesser water production for respirator systems in spacecraft. One gram of anhydrous lithium hydroxide can remove 450 cm of carbon dioxide gas. The monohydrate loses its water at 100–110 °C.

Precursor

Lithium hydroxide, together with lithium carbonate, is a key intermediates used for the production of other lithium compounds, illustrated by its use in the production of lithium fluoride:

LiOH + HF → LiF + H2O

Other uses

It is also used in ceramics and some Portland cement formulations, where it is also used to suppress ASR (concrete cancer).

Lithium hydroxide (isotopically enriched in lithium-7) is used to alkalize the reactor coolant in pressurized water reactors for corrosion control. It is good radiation protection against free neutrons.

Price

In 2012, the price of lithium hydroxide was about US$5–6/kg.

In December 2020, it had risen to $9/kg

On 18 March 2021, the price had risen to $11.50/kg

See also

References

  1. Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, Florida: CRC Press. ISBN 0-8493-0487-3.
  2. ^ Khosravi J (2007). Production of Lithium Peroxide and Lithium Oxide in an Alcohol Medium. Chapter 9: Results. ISBN 978-0-494-38597-5.
  3. Popov K, Lajunen LH, Popov A, Rönkkömäki H, Hannu-Kuure H, Vendilo A (2002). "Li, Na, K and Cs NMR comparative equilibrium study of alkali metal cation hydroxide complexes in aqueous solutions. First numerical value for CsOH formation". Inorganic Chemistry Communications. 5 (3): 223–225. doi:10.1016/S1387-7003(02)00335-0. Retrieved 21 January 2017.
  4. CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data. William M. Haynes, David R. Lide, Thomas J. Bruno (2016-2017, 97th ed.). Boca Raton, Florida. 2016. ISBN 978-1-4987-5428-6. OCLC 930681942.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  5. CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data. William M. Haynes, David R. Lide, Thomas J. Bruno (2016-2017, 97th ed.). Boca Raton, Florida. 2016. ISBN 978-1-4987-5428-6. OCLC 930681942.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  6. Chambers M. "ChemIDplus – 1310-65-2 – WMFOQBRAJBCJND-UHFFFAOYSA-M – Lithium hydroxide anhydrous – Similar structures search, synonyms, formulas, resource links, and other chemical information". chem.sis.nlm.nih.gov. Retrieved 12 April 2018.
  7. ^ Wietelmann U, Bauer RJ (2000). "Lithium and Lithium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a15_393. ISBN 3-527-30673-0.
  8. "Proposed Albemarle Plant Site" (PDF). Albemarle. Retrieved 4 December 2020.
  9. "Corporate presentation" (PDF). Nemaska Lithium. May 2018. Archived from the original (PDF) on 23 October 2021. Retrieved 5 December 2020.
  10. ^ "China's Ganfeng to Be Largest Lithium Hydroxide Producer". BloombergNEF. 10 September 2020. Retrieved 4 December 2020.
  11. "Ganfeng Lithium Group". Ganfeng Lithium. Retrieved 25 March 2021.
  12. Stephens, Kate; Lynch, Jacqueline (27 August 2020). "Slowing demand for lithium sees WA's largest refinery scaled back". www.abc.net.au.
  13. "Largest of its kind lithium hydroxide plant launched in Kwinana". Government of Western Australia. 10 September 2019. Archived from the original on 17 February 2023. Retrieved 4 December 2020.
  14. Barrera, Priscilla (27 June 2019). "Will Lithium Hydroxide Really Overtake Lithium Carbonate? | INN". Investing News Network. Retrieved 5 December 2020.
  15. Jaunsen JR (1989). "The Behavior and Capabilities of Lithium Hydroxide Carbon Dioxide Scrubbers in a Deep Sea Environment". US Naval Academy Technical Report. USNA-TSPR-157. Archived from the original on 2009-08-24. Retrieved 2008-06-17.
  16. Kawamura M, Fuwa H (2003). "Effects of lithium salts on ASR gel composition and expansion of mortars". Cement and Concrete Research. 33 (6): 913–919. doi:10.1016/S0008-8846(02)01092-X. OSTI 20658311. Retrieved 2022-10-17.
  17. Managing Critical Isotopes: Stewardship of Lithium-7 Is Needed to Ensure a Stable Supply, GAO-13-716 // U.S. Government Accountability Office, 19 September 2013; pdf
  18. "Lithium Prices 2012". investingnews.com. Investing News Network. 14 June 2012. Archived from the original on 11 March 2018. Retrieved 12 April 2018.
  19. "London Metal Exchange: Lithium prices". London metal exchange. Retrieved 4 December 2020.
  20. "LITHIUM AT THE LME". LME The London Metal Exchange. 18 March 2021. Retrieved 22 March 2021.

External links

Lithium compounds (list)
Inorganic (list)
Organic (soaps)
Minerals
Hypothetical
Other Li-related
Hydroxides
HOH He
LiOH Be(OH)2 B(OH)3 C(OH)4 N(OH)3
[NH4]OH
O(OH)2 FOH Ne
NaOH Mg(OH)2 Al(OH)3 Si(OH)4 P(OH)3 S(OH)2 ClOH Ar
KOH Ca(OH)2 Sc(OH)3 Ti(OH)2
Ti(OH)3
Ti(OH)4
V(OH)2
V(OH)3
Cr(OH)2
Cr(OH)3
Mn(OH)2 Fe(OH)2
Fe(OH)3
Co(OH)2 Ni(OH)2 CuOH
Cu(OH)2
Zn(OH)2 Ga(OH)3 Ge(OH)2 As(OH)3 Se BrOH Kr
RbOH Sr(OH)2 Y(OH)3 Zr(OH)4 Nb Mo Tc(OH)4 Ru Rh(OH)3 Pd AgOH Cd(OH)2 In(OH)3 Sn(OH)2
Sn(OH)4
Sb(OH)3 Te(OH)6 IOH Xe
CsOH Ba(OH)2 * Lu(OH)3 Hf Ta W Re Os Ir Pt Au(OH)3 Hg(OH)2 TlOH
Tl(OH)3
Pb(OH)2
Pb(OH)4
Bi(OH)3 Po At Rn
FrOH Ra(OH)2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* La(OH)3 Ce(OH)3
Ce(OH)4
Pr(OH)3 Nd(OH)3 Pm(OH)3 Sm(OH)3 Eu(OH)2
Eu(OH)3
Gd(OH)3 Tb(OH)3 Dy(OH)3 Ho(OH)3 Er(OH)3 Tm(OH)3 Yb(OH)3
** Ac(OH)3 Th(OH)4 Pa U(OH)2
U(OH)3
UO2(OH)2
Np(OH)3
Np(OH)4
NpO2(OH)3
Pu Am(OH)3 Cm(OH)3 Bk Cf Es Fm Md No
Categories: