| ||||||||||||||||||||||||||||||||||
Actinium (89Ac) has no stable isotopes and no characteristic terrestrial isotopic composition, thus a standard atomic weight cannot be given. There are 34 known isotopes, from Ac to Ac, and 7 isomers. Three isotopes are found in nature, Ac, Ac and Ac, as intermediate decay products of, respectively, Np, U, and Th. Ac and Ac are extremely rare, so almost all natural actinium is Ac.
The most stable isotopes are Ac with a half-life of 21.772 years, Ac with a half-life of 10.0 days, and Ac with a half-life of 29.37 hours. All other isotopes have half-lives under 10 hours, and most under a minute. The shortest-lived known isotope is Ac with a half-life of 69 ns.
Purified Ac comes into equilibrium with its decay products (Th and Fr) after 185 days.
List of isotopes
Nuclide |
Historic name |
Z | N | Isotopic mass (Da) |
Half-life |
Decay mode |
Daughter isotope |
Spin and parity |
Isotopic abundance | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | |||||||||||||||||||
Ac | 89 | 114 | 56+269 −26 μs |
α | Fr | (1/2+) | |||||||||||||
Ac | 89 | 115 | 7.4+2.2 −1.4 ms |
α | Fr | ||||||||||||||
Ac | 89 | 116 | 7.7+2.7 −1.6 ms |
α | Fr | 9/2−? | |||||||||||||
Ac | 89 | 117 | 206.01450(8) | 25(7) ms | α | Fr | (3+) | ||||||||||||
Ac | 80(50) keV | 15(6) ms | α | Fr | |||||||||||||||
Ac | 290(110)# keV | 41(16) ms | α | Fr | (10−) | ||||||||||||||
Ac | 89 | 118 | 207.01195(6) | 31(8) ms |
α | Fr | 9/2−# | ||||||||||||
Ac | 89 | 119 | 208.01155(6) | 97(16) ms |
α (99%) | Fr | (3+) | ||||||||||||
β (1%) | Ra | ||||||||||||||||||
Ac | 506(26) keV | 28(7) ms |
α (89%) | Fr | (10−) | ||||||||||||||
IT (10%) | Ac | ||||||||||||||||||
β (1%) | Ra | ||||||||||||||||||
Ac | 89 | 120 | 209.00949(5) | 92(11) ms | α (99%) | Fr | (9/2−) | ||||||||||||
β (1%) | Ra | ||||||||||||||||||
Ac | 89 | 121 | 210.00944(6) | 350(40) ms | α (96%) | Fr | 7+# | ||||||||||||
β (4%) | Ra | ||||||||||||||||||
Ac | 89 | 122 | 211.00773(8) | 213(25) ms | α (99.8%) | Fr | 9/2−# | ||||||||||||
β (.2%) | Ra | ||||||||||||||||||
Ac | 89 | 123 | 212.00781(7) | 920(50) ms | α (97%) | Fr | 6+# | ||||||||||||
β (3%) | Ra | ||||||||||||||||||
Ac | 89 | 124 | 213.00661(6) | 731(17) ms | α | Fr | (9/2−)# | ||||||||||||
β (rare) | Ra | ||||||||||||||||||
Ac | 89 | 125 | 214.006902(24) | 8.2(2) s | α (89%) | Fr | (5+)# | ||||||||||||
β (11%) | Ra | ||||||||||||||||||
Ac | 89 | 126 | 215.006454(23) | 0.17(1) s | α (99.91%) | Fr | 9/2− | ||||||||||||
β (.09%) | Ra | ||||||||||||||||||
Ac | 89 | 127 | 216.008720(29) | 440(16) μs | α | Fr | (1−) | ||||||||||||
Ac | 38(5) keV | 441(7) μs | α | Fr | (9−) | ||||||||||||||
Ac | 422#(100#) keV | ~300 ns | IT | Ac | |||||||||||||||
Ac | 89 | 128 | 217.009347(14) | 69(4) ns | α | Fr | 9/2− | ||||||||||||
Ac | 2012(20) keV | 740(40) ns | (29/2)+ | ||||||||||||||||
Ac | 89 | 129 | 218.01164(5) | 1.08(9) μs | α | Fr | (1−)# | ||||||||||||
Ac | 607(86)# keV | 103(11) ns | IT | Ac | (11+) | ||||||||||||||
Ac | 89 | 130 | 219.01242(5) | 11.8(15) μs | α | Fr | 9/2− | ||||||||||||
Ac | 89 | 131 | 220.014763(16) | 26.36(19) ms | α | Fr | (3−) | ||||||||||||
Ac | 89 | 132 | 221.01559(5) | 52(2) ms | α | Fr | 9/2−# | ||||||||||||
Ac | 89 | 133 | 222.017844(6) | 5.0(5) s | α (99(1)%) | Fr | 1− | ||||||||||||
β (1(1)%) | Ra | ||||||||||||||||||
Ac | 78(21) keV | 1.05(5) min | α (98.6%) | Fr | 5+# | ||||||||||||||
β (1.4%) | Ra | ||||||||||||||||||
IT? | Ac | ||||||||||||||||||
Ac | 89 | 134 | 223.019137(8) | 2.10(5) min | α (99%) | Fr | (5/2−) | ||||||||||||
EC (1%) | Ra | ||||||||||||||||||
CD (3.2×10%) | Bi C | ||||||||||||||||||
Ac | 89 | 135 | 224.021723(4) | 2.78(17) h | β (90.9%) | Ra | 0− | ||||||||||||
α (9.1%) | Fr | ||||||||||||||||||
β (1.6%) | Th | ||||||||||||||||||
Ac | 89 | 136 | 225.023230(5) | 10.0(1) d | α | Fr | (3/2−) | Trace | |||||||||||
CD (6×10%) | Bi C | ||||||||||||||||||
Ac | 89 | 137 | 226.026098(4) | 29.37(12) h | β (83%) | Th | (1)(−#) | ||||||||||||
EC (17%) | Ra | ||||||||||||||||||
α (.006%) | Fr | ||||||||||||||||||
Ac | Actinium | 89 | 138 | 227.0277521(26) | 21.772(3) y | β (98.62%) | Th | 3/2− | Trace | ||||||||||
α (1.38%) | Fr | ||||||||||||||||||
Ac | Mesothorium 2 | 89 | 139 | 228.0310211(27) | 6.13(2) h | β | Th | 3+ | Trace | ||||||||||
Ac | 89 | 140 | 229.03302(4) | 62.7(5) min | β | Th | (3/2+) | ||||||||||||
Ac | 89 | 141 | 230.03629(32) | 122(3) s | β | Th | (1+) | ||||||||||||
Ac | 89 | 142 | 231.03856(11) | 7.5(1) min | β | Th | (1/2+) | ||||||||||||
Ac | 89 | 143 | 232.04203(11) | 119(5) s | β | Th | (1+) | ||||||||||||
Ac | 89 | 144 | 233.04455(32)# | 145(10) s | β | Th | (1/2+) | ||||||||||||
Ac | 89 | 145 | 234.04842(43)# | 44(7) s | β | Th | |||||||||||||
Ac | 89 | 146 | 235.05123(38)# | 60(4) s | β | Th | 1/2+# | ||||||||||||
Ac | 89 | 147 | 236.05530(54)# | 72+345 −33 s |
β | Th | |||||||||||||
This table header & footer: |
- Ac – Excited nuclear isomer.
- ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
-
Modes of decay:
CD: Cluster decay EC: Electron capture IT: Isomeric transition - Bold italics symbol as daughter – Daughter product is nearly stable.
- ( ) spin value – Indicates spin with weak assignment arguments.
- ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- This decay mode is observed, but only an upper limit of branching ratio is experimentally known
- Has medical uses
- Intermediate decay product of Np
- Source of element's name
- Intermediate decay product of U
- Intermediate decay product of Th
Actinides vs fission products
Actinides and fission products by half-life | ||||||||
---|---|---|---|---|---|---|---|---|
Actinides by decay chain | Half-life range (a) |
Fission products of U by yield | ||||||
4n | 4n + 1 | 4n + 2 | 4n + 3 | 4.5–7% | 0.04–1.25% | <0.001% | ||
Ra | 4–6 a | Eu | ||||||
Bk | > 9 a | |||||||
Cm | Pu | Cf | Ac | 10–29 a | Sr | Kr | Cd | |
U | Pu | Cm | 29–97 a | Cs | Sm | Sn | ||
Cf | Am | 141–351 a |
No fission products have a half-life | |||||
Am | Cf | 430–900 a | ||||||
Ra | Bk | 1.3–1.6 ka | ||||||
Pu | Th | Cm | Am | 4.7–7.4 ka | ||||
Cm | Cm | 8.3–8.5 ka | ||||||
Pu | 24.1 ka | |||||||
Th | Pa | 32–76 ka | ||||||
Np | U | U | 150–250 ka | Tc | Sn | |||
Cm | Pu | 327–375 ka | Se | |||||
1.33 Ma | Cs | |||||||
Np | 1.61–6.5 Ma | Zr | Pd | |||||
U | Cm | 15–24 Ma | I | |||||
Pu | 80 Ma |
... nor beyond 15.7 Ma | ||||||
Th | U | U | 0.7–14.1 Ga | |||||
|
Notable isotopes
Actinium-225
Main article: Actinium-225Actinium-225 is a highly radioactive isotope with 136 neutrons. It is an alpha emitter and has a half-life of 9.919 days. As of 2024, it is being researched as a possible alpha source in targeted alpha therapy. Actinium-225 undergoes a series of three alpha decays – via the short-lived francium-221 and astatine-217 – to Bi, which itself is used as an alpha source. Another benefit is that the decay chain of Ac ends in the nuclide Bi, which has a considerably shorter biological half-life than lead. However, a major factor limiting its usage is the difficulty in producing the short-lived isotope, as it is most commonly isolated from aging parent nuclides (such as U); it may also be produced in cyclotrons, linear accelerators, or fast breeder reactors.
Actinium-226
Actinium-226 is an isotope of actinium with a half-life of 29.37 hours. It mainly (83%) undergos beta decay, sometimes (17%) undergo electron capture, and rarely (0.006%) undergo alpha decay. There are researches on Ac to use it in SPECT.
Actinium-227
Actinium-227 is the most stable isotope of actinium, with a half-life of 21.772 years. It mainly (98.62%) undergos beta decay, but sometimes (1.38%) it will undergo alpha decay instead. Ac is a member of the actinium series. It is found only in traces in uranium ores – one tonne of uranium in ore contains about 0.2 milligrams of Ac. Ac is prepared, in milligram amounts, by the neutron irradiation of Ra in a nuclear reactor.
Ac is highly radioactive and was therefore studied for use as an active element of radioisotope thermoelectric generators, for example in spacecraft. The oxide of Ac pressed with beryllium is also an efficient neutron source with the activity exceeding that of the standard americium-beryllium and radium-beryllium pairs. In all those applications, Ac (a beta source) is merely a progenitor which generates alpha-emitting isotopes upon its decay. Beryllium captures alpha particles and emits neutrons owing to its large cross-section for the (α,n) nuclear reaction:
The AcBe neutron sources can be applied in a neutron probe – a standard device for measuring the quantity of water present in soil, as well as moisture/density for quality control in highway construction. Such probes are also used in well logging applications, in neutron radiography, tomography and other radiochemical investigations.
The medium half-life of Ac makes it a very convenient radioactive isotope in modeling the slow vertical mixing of oceanic waters. The associated processes cannot be studied with the required accuracy by direct measurements of current velocities (of the order 50 meters per year). However, evaluation of the concentration depth-profiles for different isotopes allows estimating the mixing rates. The physics behind this method is as follows: oceanic waters contain homogeneously dispersed U. Its decay product, Pa, gradually precipitates to the bottom, so that its concentration first increases with depth and then stays nearly constant. Pa decays to Ac; however, the concentration of the latter isotope does not follow the Pa depth profile, but instead increases toward the sea bottom. This occurs because of the mixing processes which raise some additional Ac from the sea bottom. Thus analysis of both Pa and Ac depth profiles allows researchers to model the mixing behavior.
See also
Notes
- Bismuth-209 decays into thallium-205 with a half-life exceeding 10 years, but this half-life is so long that for practical purposes bismuth-209 can be considered stable.
References
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- G. D. Considine, ed. (2005). "Chemical Elements". Van Nostrand's Encyclopedia of Chemistry. Wiley-Interscience. p. 332. ISBN 978-0-471-61525-5.
- Wang, J. G.; Gan, Z. G.; Zhang, Z. Y.; et al. (1 March 2024). "α-decay properties of new neutron-deficient isotope 203Ac". Physics Letters B. 850: 138503. doi:10.1016/j.physletb.2024.138503. ISSN 0370-2693.
- ^ Huang, M. H.; Gan, Z. G.; Zhang, Z. Y.; et al. (10 November 2022). "α decay of the new isotope Ac". Physics Letters B. 834: 137484. Bibcode:2022PhLB..83437484H. doi:10.1016/j.physletb.2022.137484. ISSN 0370-2693. S2CID 252730841.
- Zhang, Z. Y.; Gan, Z. G.; Ma, L.; et al. (January 2014). "α decay of the new neutron-deficient isotope Ac". Physical Review C. 89 (1): 014308. Bibcode:2014PhRvC..89a4308Z. doi:10.1103/PhysRevC.89.014308.
- Chen, L.; et al. (2010). "Discovery and investigation of heavy neutron-rich isotopes with time-resolved Schottky spectrometry in the element range from thallium to actinium" (PDF). Physics Letters B. 691 (5): 234–237. Bibcode:2010PhLB..691..234C. doi:10.1016/j.physletb.2010.05.078.
- Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here.
- Specifically from thermal neutron fission of uranium-235, e.g. in a typical nuclear reactor.
- Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4.
"The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk with a half-life greater than 9 . No growth of Cf was detected, and a lower limit for the β half-life can be set at about 10 . No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 ." - This is the heaviest nuclide with a half-life of at least four years before the "sea of instability".
- Excluding those "classically stable" nuclides with half-lives significantly in excess of Th; e.g., while Cd has a half-life of only fourteen years, that of Cd is eight quadrillion years.
- A. Scheinberg, David; R. McDevitt, Michael (1 October 2011). "Actinium-225 in Targeted Alpha-Particle Therapeutic Applications". Current Radiopharmaceuticals. 4 (4): 306–320. doi:10.2174/1874471011104040306. PMC 5565267. PMID 22202153.
- Reissig, Falco; Bauer, David; Zarschler, Kristof; Novy, Zbynek; Bendova, Katerina; Ludik, Marie-Charlotte; Kopka, Klaus; Pietzsch, Hans-Jürgen; Petrik, Milos; Mamat, Constantin (20 April 2021). "Towards Targeted Alpha Therapy with Actinium-225: Chelators for Mild Condition Radiolabeling and Targeting PSMA—A Proof of Concept Study". Cancers. 13 (8): 1974. doi:10.3390/cancers13081974. PMC 8073976. PMID 33923965.
- Bidkar, Anil P.; Zerefa, Luann; Yadav, Surekha; VanBrocklin, Henry F.; Flavell, Robert R. (2024). "Actinium-225 targeted alpha particle therapy for prostate cancer". Theranostics. 14 (7): 2969–2992. doi:10.7150/thno.96403.
- Ahenkorah, Stephen; Cassells, Irwin; Deroose, Christophe M.; Cardinaels, Thomas; Burgoyne, Andrew R.; Bormans, Guy; Ooms, Maarten; Cleeren, Frederik (21 April 2021). "Bismuth-213 for Targeted Radionuclide Therapy: From Atom to Bedside". Pharmaceutics. 13 (5): 599. doi:10.3390/pharmaceutics13050599. PMC 8143329.
- Handbook on the toxicology of metals. Volume 2: Specific metals (Fourth ed.). Amsterdam Boston Heidelberg London: Elsevier, Aademic Press. 2015. p. 655. ISBN 978-0-12-398293-3.
- Wani, Ab Latif; Ara, Anjum; Usmani, Jawed Ahmad (1 June 2015). "Lead toxicity: a review". Interdisciplinary Toxicology. 8 (2): 55–64. doi:10.1515/intox-2015-0009. PMC 4961898.
- Dhiman, Deeksha; Vatsa, Rakhee; Sood, Ashwani (September 2022). "Challenges and opportunities in developing Actinium-225 radiopharmaceuticals". Nuclear Medicine Communications. 43 (9): 970–977. doi:10.1097/MNM.0000000000001594. PMID 35950353.
- Koniar, Helena; Rodríguez-Rodríguez, Cristina; Radchenko, Valery; Yang, Hua; Kunz, Peter; Rahmim, Arman; Uribe, Carlos; Schaffer, Paul (2022-09-12). "SPECT imaging of Ac as a theranostic isotope for Ac radiopharmaceutical development". Physics in Medicine and Biology. 67 (18). doi:10.1088/1361-6560/ac8b5f. ISSN 1361-6560. PMID 35985341.
- Koniar, Helena; Wharton, Luke; Ingham, Aidan; Rodríguez-Rodríguez, Cristina; Kunz, Peter; Radchenko, Valery; Yang, Hua; Rahmim, Arman; Uribe, Carlos; Schaffer, Paul (2024-07-16). "In vivoquantitative SPECT imaging of actinium-226: feasibility and proof-of-concept". Physics in Medicine and Biology. 69 (15). doi:10.1088/1361-6560/ad5c37. ISSN 1361-6560. PMID 38925140.
- Hagemann, French (1950). "The Isolation of Actinium". Journal of the American Chemical Society. 72 (2): 768–771. doi:10.1021/ja01158a033.
- ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 946. ISBN 978-0-08-037941-8.
- Emeleus, H. J. (1987). Advances in inorganic chemistry and radiochemistry. Academic Press. pp. 16–. ISBN 978-0-12-023631-2.
- Russell, Alan M. and Lee, Kok Loong (2005) Structure-property relations in nonferrous metals. Wiley. ISBN 0-471-64952-X, pp. 470–471
- Majumdar, D. K. (2004) Irrigation Water Management: Principles and Practice. ISBN 81-203-1729-7 p. 108
- Chandrasekharan, H. and Gupta, Navindu (2006) Fundamentals of Nuclear Science – Application in Agriculture. ISBN 81-7211-200-9 pp. 202 ff
- Dixon, W. R.; Bielesch, Alice; Geiger, K. W. (1957). "Neutron Spectrum of an Actinium–Beryllium Source". Can. J. Phys. 35 (6): 699–702. Bibcode:1957CaJPh..35..699D. doi:10.1139/p57-075.
- Nozaki, Yoshiyuki (1984). "Excess Ac in deep ocean water". Nature. 310 (5977): 486–488. Bibcode:1984Natur.310..486N. doi:10.1038/310486a0. S2CID 4344946.
- Geibert, W.; Rutgers Van Der Loeff, M. M.; Hanfland, C.; Dauelsberg, H.-J. (2002). "Actinium-227 as a deep-sea tracer: sources, distribution and applications". Earth and Planetary Science Letters. 198 (1–2): 147–165. Bibcode:2002E&PSL.198..147G. doi:10.1016/S0012-821X(02)00512-5.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.