In functional analysis, a Banach function algebra on a compact Hausdorff space X is unital subalgebra, A, of the commutative C*-algebra C(X) of all continuous, complex-valued functions from X, together with a norm on A that makes it a Banach algebra.
A function algebra is said to vanish at a point p if f(p) = 0 for all . A function algebra separates points if for each distinct pair of points , there is a function such that .
For every define for . Then is a homomorphism (character) on , non-zero if does not vanish at .
Theorem: A Banach function algebra is semisimple (that is its Jacobson radical is equal to zero) and each commutative unital, semisimple Banach algebra is isomorphic (via the Gelfand transform) to a Banach function algebra on its character space (the space of algebra homomorphisms from A into the complex numbers given the relative weak* topology).
If the norm on is the uniform norm (or sup-norm) on , then is called a uniform algebra. Uniform algebras are an important special case of Banach function algebras.
References
- Andrew Browder (1969) Introduction to Function Algebras, W. A. Benjamin
- H.G. Dales (2000) Banach Algebras and Automatic Continuity, London Mathematical Society Monographs 24, Clarendon Press ISBN 0-19-850013-0
- Graham Allan & H. Garth Dales (2011) Introduction to Banach Spaces and Algebras, Oxford University Press ISBN 978-0-19-920654-4
Functional analysis (topics – glossary) | |||||
---|---|---|---|---|---|
Spaces |
| ||||
Theorems | |||||
Operators | |||||
Algebras | |||||
Open problems | |||||
Applications | |||||
Advanced topics | |||||
Spectral theory and -algebras | |
---|---|
Basic concepts | |
Main results | |
Special Elements/Operators | |
Spectrum | |
Decomposition | |
Spectral Theorem | |
Special algebras | |
Finite-Dimensional | |
Generalizations | |
Miscellaneous | |
Examples | |
Applications |
|
This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it. |