In mathematics, specifically in functional and complex analysis, the disk algebra A(D) (also spelled disc algebra) is the set of holomorphic functions
- ƒ : D → ,
(where D is the open unit disk in the complex plane ) that extend to a continuous function on the closure of D. That is,
where H(D) denotes the Banach space of bounded analytic functions on the unit disc D (i.e. a Hardy space). When endowed with the pointwise addition (ƒ + g)(z) = ƒ(z) + g(z), and pointwise multiplication (ƒg)(z) = ƒ(z)g(z), this set becomes an algebra over C, since if ƒ and g belong to the disk algebra then so do ƒ + g and ƒg.
Given the uniform norm,
by construction it becomes a uniform algebra and a commutative Banach algebra.
By construction the disc algebra is a closed subalgebra of the Hardy space H. In contrast to the stronger requirement that a continuous extension to the circle exists, it is a lemma of Fatou that a general element of H can be radially extended to the circle almost everywhere.
References
Functional analysis (topics – glossary) | |||||
---|---|---|---|---|---|
Spaces |
| ||||
Theorems | |||||
Operators | |||||
Algebras | |||||
Open problems | |||||
Applications | |||||
Advanced topics | |||||
Spectral theory and -algebras | |
---|---|
Basic concepts | |
Main results | |
Special Elements/Operators | |
Spectrum | |
Decomposition | |
Spectral Theorem | |
Special algebras | |
Finite-Dimensional | |
Generalizations | |
Miscellaneous | |
Examples | |
Applications |
|
This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it. |