Misplaced Pages

Riesz projector

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, or more specifically in spectral theory, the Riesz projector is the projector onto the eigenspace corresponding to a particular eigenvalue of an operator (or, more generally, a projector onto an invariant subspace corresponding to an isolated part of the spectrum). It was introduced by Frigyes Riesz in 1912.

Definition

Let A {\displaystyle A} be a closed linear operator in the Banach space B {\displaystyle {\mathfrak {B}}} . Let Γ {\displaystyle \Gamma } be a simple or composite rectifiable contour, which encloses some region G Γ {\displaystyle G_{\Gamma }} and lies entirely within the resolvent set ρ ( A ) {\displaystyle \rho (A)} ( Γ ρ ( A ) {\displaystyle \Gamma \subset \rho (A)} ) of the operator A {\displaystyle A} . Assuming that the contour Γ {\displaystyle \Gamma } has a positive orientation with respect to the region G Γ {\displaystyle G_{\Gamma }} , the Riesz projector corresponding to Γ {\displaystyle \Gamma } is defined by

P Γ = 1 2 π i Γ ( A z I B ) 1 d z ; {\displaystyle P_{\Gamma }=-{\frac {1}{2\pi \mathrm {i} }}\oint _{\Gamma }(A-zI_{\mathfrak {B}})^{-1}\,\mathrm {d} z;}

here I B {\displaystyle I_{\mathfrak {B}}} is the identity operator in B {\displaystyle {\mathfrak {B}}} .

If λ σ ( A ) {\displaystyle \lambda \in \sigma (A)} is the only point of the spectrum of A {\displaystyle A} in G Γ {\displaystyle G_{\Gamma }} , then P Γ {\displaystyle P_{\Gamma }} is denoted by P λ {\displaystyle P_{\lambda }} .

Properties

The operator P Γ {\displaystyle P_{\Gamma }} is a projector which commutes with A {\displaystyle A} , and hence in the decomposition

B = L Γ N Γ L Γ = P Γ B , N Γ = ( I B P Γ ) B , {\displaystyle {\mathfrak {B}}={\mathfrak {L}}_{\Gamma }\oplus {\mathfrak {N}}_{\Gamma }\qquad {\mathfrak {L}}_{\Gamma }=P_{\Gamma }{\mathfrak {B}},\quad {\mathfrak {N}}_{\Gamma }=(I_{\mathfrak {B}}-P_{\Gamma }){\mathfrak {B}},}

both terms L Γ {\displaystyle {\mathfrak {L}}_{\Gamma }} and N Γ {\displaystyle {\mathfrak {N}}_{\Gamma }} are invariant subspaces of the operator A {\displaystyle A} . Moreover,

  1. The spectrum of the restriction of A {\displaystyle A} to the subspace L Γ {\displaystyle {\mathfrak {L}}_{\Gamma }} is contained in the region G Γ {\displaystyle G_{\Gamma }} ;
  2. The spectrum of the restriction of A {\displaystyle A} to the subspace N Γ {\displaystyle {\mathfrak {N}}_{\Gamma }} lies outside the closure of G Γ {\displaystyle G_{\Gamma }} .

If Γ 1 {\displaystyle \Gamma _{1}} and Γ 2 {\displaystyle \Gamma _{2}} are two different contours having the properties indicated above, and the regions G Γ 1 {\displaystyle G_{\Gamma _{1}}} and G Γ 2 {\displaystyle G_{\Gamma _{2}}} have no points in common, then the projectors corresponding to them are mutually orthogonal:

P Γ 1 P Γ 2 = P Γ 2 P Γ 1 = 0. {\displaystyle P_{\Gamma _{1}}P_{\Gamma _{2}}=P_{\Gamma _{2}}P_{\Gamma _{1}}=0.}

See also

References

  1. Riesz, F.; Sz.-Nagy, B. (1956). Functional Analysis. Blackie & Son Limited.
  2. Gohberg, I. C; Kreĭn, M. G. (1969). Introduction to the theory of linear nonselfadjoint operators. American Mathematical Society, Providence, R.I.
Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Spectral theory and -algebras
Basic concepts
Main results
Special Elements/Operators
Spectrum
Decomposition
Spectral Theorem
Special algebras
Finite-Dimensional
Generalizations
Miscellaneous
Examples
Applications
Category: