Misplaced Pages

Spectral theory of normal C*-algebras

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "Spectral theory of normal C*-algebras" – news · newspapers · books · scholar · JSTOR (July 2020)
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (June 2020) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In functional analysis, every C-algebra is isomorphic to a subalgebra of the C-algebra B ( H ) {\displaystyle {\mathcal {B}}(H)} of bounded linear operators on some Hilbert space H . {\displaystyle H.} This article describes the spectral theory of closed normal subalgebras of B ( H ) {\displaystyle {\mathcal {B}}(H)} . A subalgebra A {\displaystyle A} of B ( H ) {\displaystyle {\mathcal {B}}(H)} is called normal if it is commutative and closed under the {\displaystyle \ast } operation: for all x , y A {\displaystyle x,y\in A} , we have x A {\displaystyle x^{\ast }\in A} and that x y = y x {\displaystyle xy=yx} .

Resolution of identity

See also: Projection-valued measure

Throughout, H {\displaystyle H} is a fixed Hilbert space.

A projection-valued measure on a measurable space ( X , Ω ) , {\displaystyle (X,\Omega ),} where Ω {\displaystyle \Omega } is a σ-algebra of subsets of X , {\displaystyle X,} is a mapping π : Ω B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} such that for all ω Ω , {\displaystyle \omega \in \Omega ,} π ( ω ) {\displaystyle \pi (\omega )} is a self-adjoint projection on H {\displaystyle H} (that is, π ( ω ) {\displaystyle \pi (\omega )} is a bounded linear operator π ( ω ) : H H {\displaystyle \pi (\omega ):H\to H} that satisfies π ( ω ) = π ( ω ) {\displaystyle \pi (\omega )=\pi (\omega )^{*}} and π ( ω ) π ( ω ) = π ( ω ) {\displaystyle \pi (\omega )\circ \pi (\omega )=\pi (\omega )} ) such that π ( X ) = Id H {\displaystyle \pi (X)=\operatorname {Id} _{H}\quad } (where Id H {\displaystyle \operatorname {Id} _{H}} is the identity operator of H {\displaystyle H} ) and for every x , y H , {\displaystyle x,y\in H,} the function Ω C {\displaystyle \Omega \to \mathbb {C} } defined by ω π ( ω ) x , y {\displaystyle \omega \mapsto \langle \pi (\omega )x,y\rangle } is a complex measure on M {\displaystyle M} (that is, a complex-valued countably additive function).

A resolution of identity on a measurable space ( X , Ω ) {\displaystyle (X,\Omega )} is a function π : Ω B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} such that for every ω 1 , ω 2 Ω {\displaystyle \omega _{1},\omega _{2}\in \Omega } :

  1. π ( ) = 0 {\displaystyle \pi (\varnothing )=0} ;
  2. π ( X ) = Id H {\displaystyle \pi (X)=\operatorname {Id} _{H}} ;
  3. for every ω Ω , {\displaystyle \omega \in \Omega ,} π ( ω ) {\displaystyle \pi (\omega )} is a self-adjoint projection on H {\displaystyle H} ;
  4. for every x , y H , {\displaystyle x,y\in H,} the map π x , y : Ω C {\displaystyle \pi _{x,y}:\Omega \to \mathbb {C} } defined by π x , y ( ω ) = π ( ω ) x , y {\displaystyle \pi _{x,y}(\omega )=\langle \pi (\omega )x,y\rangle } is a complex measure on Ω {\displaystyle \Omega } ;
  5. π ( ω 1 ω 2 ) = π ( ω 1 ) π ( ω 2 ) {\displaystyle \pi \left(\omega _{1}\cap \omega _{2}\right)=\pi \left(\omega _{1}\right)\circ \pi \left(\omega _{2}\right)} ;
  6. if ω 1 ω 2 = {\displaystyle \omega _{1}\cap \omega _{2}=\varnothing } then π ( ω 1 ω 2 ) = π ( ω 1 ) + π ( ω 2 ) {\displaystyle \pi \left(\omega _{1}\cup \omega _{2}\right)=\pi \left(\omega _{1}\right)+\pi \left(\omega _{2}\right)} ;

If Ω {\displaystyle \Omega } is the σ {\displaystyle \sigma } -algebra of all Borels sets on a Hausdorff locally compact (or compact) space, then the following additional requirement is added:

  1. for every x , y H , {\displaystyle x,y\in H,} the map π x , y : Ω C {\displaystyle \pi _{x,y}:\Omega \to \mathbb {C} } is a regular Borel measure (this is automatically satisfied on compact metric spaces).

Conditions 2, 3, and 4 imply that π {\displaystyle \pi } is a projection-valued measure.

Properties

Throughout, let π {\displaystyle \pi } be a resolution of identity. For all x H , {\displaystyle x\in H,} π x , x : Ω C {\displaystyle \pi _{x,x}:\Omega \to \mathbb {C} } is a positive measure on Ω {\displaystyle \Omega } with total variation π x , x = π x , x ( X ) = x 2 {\displaystyle \left\|\pi _{x,x}\right\|=\pi _{x,x}(X)=\|x\|^{2}} and that satisfies π x , x ( ω ) = π ( ω ) x , x = π ( ω ) x 2 {\displaystyle \pi _{x,x}(\omega )=\langle \pi (\omega )x,x\rangle =\|\pi (\omega )x\|^{2}} for all ω Ω . {\displaystyle \omega \in \Omega .}

For every ω 1 , ω 2 Ω {\displaystyle \omega _{1},\omega _{2}\in \Omega } :

  • π ( ω 1 ) π ( ω 2 ) = π ( ω 2 ) π ( ω 1 ) {\displaystyle \pi \left(\omega _{1}\right)\pi \left(\omega _{2}\right)=\pi \left(\omega _{2}\right)\pi \left(\omega _{1}\right)} (since both are equal to π ( ω 1 ω 2 ) {\displaystyle \pi \left(\omega _{1}\cap \omega _{2}\right)} ).
  • If ω 1 ω 2 = {\displaystyle \omega _{1}\cap \omega _{2}=\varnothing } then the ranges of the maps π ( ω 1 ) {\displaystyle \pi \left(\omega _{1}\right)} and π ( ω 2 ) {\displaystyle \pi \left(\omega _{2}\right)} are orthogonal to each other and π ( ω 1 ) π ( ω 2 ) = 0 = π ( ω 2 ) π ( ω 1 ) . {\displaystyle \pi \left(\omega _{1}\right)\pi \left(\omega _{2}\right)=0=\pi \left(\omega _{2}\right)\pi \left(\omega _{1}\right).}
  • π : Ω B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} is finitely additive.
  • If ω 1 , ω 2 , {\displaystyle \omega _{1},\omega _{2},\ldots } are pairwise disjoint elements of Ω {\displaystyle \Omega } whose union is ω {\displaystyle \omega } and if π ( ω i ) = 0 {\displaystyle \pi \left(\omega _{i}\right)=0} for all i {\displaystyle i} then π ( ω ) = 0. {\displaystyle \pi (\omega )=0.}
    • However, π : Ω B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} is countably additive only in trivial situations as is now described: suppose that ω 1 , ω 2 , {\displaystyle \omega _{1},\omega _{2},\ldots } are pairwise disjoint elements of Ω {\displaystyle \Omega } whose union is ω {\displaystyle \omega } and that the partial sums i = 1 n π ( ω i ) {\displaystyle \sum _{i=1}^{n}\pi \left(\omega _{i}\right)} converge to π ( ω ) {\displaystyle \pi (\omega )} in B ( H ) {\displaystyle {\mathcal {B}}(H)} (with its norm topology) as n {\displaystyle n\to \infty } ; then since the norm of any projection is either 0 {\displaystyle 0} or 1 , {\displaystyle \geq 1,} the partial sums cannot form a Cauchy sequence unless all but finitely many of the π ( ω i ) {\displaystyle \pi \left(\omega _{i}\right)} are 0. {\displaystyle 0.}
  • For any fixed x H , {\displaystyle x\in H,} the map π x : Ω H {\displaystyle \pi _{x}:\Omega \to H} defined by π x ( ω ) := π ( ω ) x {\displaystyle \pi _{x}(\omega ):=\pi (\omega )x} is a countably additive H {\displaystyle H} -valued measure on Ω . {\displaystyle \Omega .}
    • Here countably additive means that whenever ω 1 , ω 2 , {\displaystyle \omega _{1},\omega _{2},\ldots } are pairwise disjoint elements of Ω {\displaystyle \Omega } whose union is ω , {\displaystyle \omega ,} then the partial sums i = 1 n π ( ω i ) x {\displaystyle \sum _{i=1}^{n}\pi \left(\omega _{i}\right)x} converge to π ( ω ) x {\displaystyle \pi (\omega )x} in H . {\displaystyle H.} Said more succinctly, i = 1 π ( ω i ) x = π ( ω ) x . {\displaystyle \sum _{i=1}^{\infty }\pi \left(\omega _{i}\right)x=\pi (\omega )x.}
    • In other words, for every pairwise disjoint family of elements ( ω i ) i = 1 Ω {\displaystyle \left(\omega _{i}\right)_{i=1}^{\infty }\subseteq \Omega } whose union is ω Ω {\displaystyle \omega _{\infty }\in \Omega } , then i = 1 n π ( ω i ) = π ( i = 1 n ω i ) {\displaystyle \sum _{i=1}^{n}\pi \left(\omega _{i}\right)=\pi \left(\bigcup _{i=1}^{n}\omega _{i}\right)} (by finite additivity of π {\displaystyle \pi } ) converges to π ( ω ) {\displaystyle \pi \left(\omega _{\infty }\right)} in the strong operator topology on B ( H ) {\displaystyle {\mathcal {B}}(H)} : for every x H {\displaystyle x\in H} , the sequence of elements i = 1 n π ( ω i ) x {\displaystyle \sum _{i=1}^{n}\pi \left(\omega _{i}\right)x} converges to π ( ω ) x {\displaystyle \pi \left(\omega _{\infty }\right)x} in H {\displaystyle H} (with respect to the norm topology).

L(π) - space of essentially bounded function

The π : Ω B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} be a resolution of identity on ( X , Ω ) . {\displaystyle (X,\Omega ).}

Essentially bounded functions

Suppose f : X C {\displaystyle f:X\to \mathbb {C} } is a complex-valued Ω {\displaystyle \Omega } -measurable function. There exists a unique largest open subset V f {\displaystyle V_{f}} of C {\displaystyle \mathbb {C} } (ordered under subset inclusion) such that π ( f 1 ( V f ) ) = 0. {\displaystyle \pi \left(f^{-1}\left(V_{f}\right)\right)=0.} To see why, let D 1 , D 2 , {\displaystyle D_{1},D_{2},\ldots } be a basis for C {\displaystyle \mathbb {C} } 's topology consisting of open disks and suppose that D i 1 , D i 2 , {\displaystyle D_{i_{1}},D_{i_{2}},\ldots } is the subsequence (possibly finite) consisting of those sets such that π ( f 1 ( D i k ) ) = 0 {\displaystyle \pi \left(f^{-1}\left(D_{i_{k}}\right)\right)=0} ; then D i 1 D i 2 = V f . {\displaystyle D_{i_{1}}\cup D_{i_{2}}\cup \cdots =V_{f}.} Note that, in particular, if D {\displaystyle D} is an open subset of C {\displaystyle \mathbb {C} } such that D Im f = {\displaystyle D\cap \operatorname {Im} f=\varnothing } then π ( f 1 ( D ) ) = π ( ) = 0 {\displaystyle \pi \left(f^{-1}(D)\right)=\pi (\varnothing )=0} so that D V f {\displaystyle D\subseteq V_{f}} (although there are other ways in which π ( f 1 ( D ) ) {\displaystyle \pi \left(f^{-1}(D)\right)} may equal 0). Indeed, C cl ( Im f ) V f . {\displaystyle \mathbb {C} \setminus \operatorname {cl} (\operatorname {Im} f)\subseteq V_{f}.}

The essential range of f {\displaystyle f} is defined to be the complement of V f . {\displaystyle V_{f}.} It is the smallest closed subset of C {\displaystyle \mathbb {C} } that contains f ( x ) {\displaystyle f(x)} for almost all x X {\displaystyle x\in X} (that is, for all x X {\displaystyle x\in X} except for those in some set ω Ω {\displaystyle \omega \in \Omega } such that π ( ω ) = 0 {\displaystyle \pi (\omega )=0} ). The essential range is a closed subset of C {\displaystyle \mathbb {C} } so that if it is also a bounded subset of C {\displaystyle \mathbb {C} } then it is compact.

The function f {\displaystyle f} is essentially bounded if its essential range is bounded, in which case define its essential supremum, denoted by f , {\displaystyle \|f\|^{\infty },} to be the supremum of all | λ | {\displaystyle |\lambda |} as λ {\displaystyle \lambda } ranges over the essential range of f . {\displaystyle f.}

Space of essentially bounded functions

Let B ( X , Ω ) {\displaystyle {\mathcal {B}}(X,\Omega )} be the vector space of all bounded complex-valued Ω {\displaystyle \Omega } -measurable functions f : X C , {\displaystyle f:X\to \mathbb {C} ,} which becomes a Banach algebra when normed by f := sup x X | f ( x ) | . {\displaystyle \|f\|_{\infty }:=\sup _{x\in X}|f(x)|.} The function {\displaystyle \|\,\cdot \,\|^{\infty }} is a seminorm on B ( X , Ω ) , {\displaystyle {\mathcal {B}}(X,\Omega ),} but not necessarily a norm. The kernel of this seminorm, N := { f B ( X , Ω ) : f = 0 } , {\displaystyle N^{\infty }:=\left\{f\in {\mathcal {B}}(X,\Omega ):\|f\|^{\infty }=0\right\},} is a vector subspace of B ( X , Ω ) {\displaystyle {\mathcal {B}}(X,\Omega )} that is a closed two-sided ideal of the Banach algebra ( B ( X , Ω ) , ) . {\displaystyle \left({\mathcal {B}}(X,\Omega ),\|\cdot \|_{\infty }\right).} Hence the quotient of B ( X , Ω ) {\displaystyle {\mathcal {B}}(X,\Omega )} by N {\displaystyle N^{\infty }} is also a Banach algebra, denoted by L ( π ) := B ( X , Ω ) / N {\displaystyle L^{\infty }(\pi ):={\mathcal {B}}(X,\Omega )/N^{\infty }} where the norm of any element f + N L ( π ) {\displaystyle f+N^{\infty }\in L^{\infty }(\pi )} is equal to f {\displaystyle \|f\|^{\infty }} (since if f + N = g + N {\displaystyle f+N^{\infty }=g+N^{\infty }} then f = g {\displaystyle \|f\|^{\infty }=\|g\|^{\infty }} ) and this norm makes L ( π ) {\displaystyle L^{\infty }(\pi )} into a Banach algebra. The spectrum of f + N {\displaystyle f+N^{\infty }} in L ( π ) {\displaystyle L^{\infty }(\pi )} is the essential range of f . {\displaystyle f.} This article will follow the usual practice of writing f {\displaystyle f} rather than f + N {\displaystyle f+N^{\infty }} to represent elements of L ( π ) . {\displaystyle L^{\infty }(\pi ).}

Theorem — Let π : Ω B ( H ) {\displaystyle \pi :\Omega \to {\mathcal {B}}(H)} be a resolution of identity on ( X , Ω ) . {\displaystyle (X,\Omega ).} There exists a closed normal subalgebra A {\displaystyle A} of B ( H ) {\displaystyle {\mathcal {B}}(H)} and an isometric -isomorphism Ψ : L ( π ) A {\displaystyle \Psi :L^{\infty }(\pi )\to A} satisfying the following properties:

  1. Ψ ( f ) x , y = X f d π x , y {\displaystyle \langle \Psi (f)x,y\rangle =\int _{X}f\operatorname {d} \pi _{x,y}} for all x , y H {\displaystyle x,y\in H} and f L ( π ) , {\displaystyle f\in L^{\infty }(\pi ),} which justifies the notation Ψ ( f ) = X f d π {\displaystyle \Psi (f)=\int _{X}f\operatorname {d} \pi } ;
  2. Ψ ( f ) x 2 = X | f | 2 d π x , x {\displaystyle \|\Psi (f)x\|^{2}=\int _{X}|f|^{2}\operatorname {d} \pi _{x,x}} for all x H {\displaystyle x\in H} and f L ( π ) {\displaystyle f\in L^{\infty }(\pi )} ;
  3. an operator R B ( H ) {\displaystyle R\in \mathbb {B} (H)} commutes with every element of Im π {\displaystyle \operatorname {Im} \pi } if and only if it commutes with every element of A = Im Ψ . {\displaystyle A=\operatorname {Im} \Psi .}
  4. if f {\displaystyle f} is a simple function equal to f = i = 1 n λ i 1 ω i , {\displaystyle f=\sum _{i=1}^{n}\lambda _{i}\mathbb {1} _{\omega _{i}},} where ω 1 , ω n {\displaystyle \omega _{1},\ldots \omega _{n}} is a partition of X {\displaystyle X} and the λ i {\displaystyle \lambda _{i}} are complex numbers, then Ψ ( f ) = i = 1 n λ i π ( ω i ) {\displaystyle \Psi (f)=\sum _{i=1}^{n}\lambda _{i}\pi \left(\omega _{i}\right)} (here 1 {\displaystyle \mathbb {1} } is the characteristic function);
  5. if f {\displaystyle f} is the limit (in the norm of L ( π ) {\displaystyle L^{\infty }(\pi )} ) of a sequence of simple functions s 1 , s 2 , {\displaystyle s_{1},s_{2},\ldots } in L ( π ) {\displaystyle L^{\infty }(\pi )} then ( Ψ ( s i ) ) i = 1 {\displaystyle \left(\Psi \left(s_{i}\right)\right)_{i=1}^{\infty }} converges to Ψ ( f ) {\displaystyle \Psi (f)} in B ( H ) {\displaystyle {\mathcal {B}}(H)} and Ψ ( f ) = f {\displaystyle \|\Psi (f)\|=\|f\|^{\infty }} ;
  6. ( f ) 2 = sup h 1 X d π h , h {\displaystyle \left(\|f\|^{\infty }\right)^{2}=\sup _{\|h\|\leq 1}\int _{X}\operatorname {d} \pi _{h,h}} for every f L ( π ) . {\displaystyle f\in L^{\infty }(\pi ).}

Spectral theorem

The maximal ideal space of a Banach algebra A {\displaystyle A} is the set of all complex homomorphisms A C , {\displaystyle A\to \mathbb {C} ,} which we'll denote by σ A . {\displaystyle \sigma _{A}.} For every T {\displaystyle T} in A , {\displaystyle A,} the Gelfand transform of T {\displaystyle T} is the map G ( T ) : σ A C {\displaystyle G(T):\sigma _{A}\to \mathbb {C} } defined by G ( T ) ( h ) := h ( T ) . {\displaystyle G(T)(h):=h(T).} σ A {\displaystyle \sigma _{A}} is given the weakest topology making every G ( T ) : σ A C {\displaystyle G(T):\sigma _{A}\to \mathbb {C} } continuous. With this topology, σ A {\displaystyle \sigma _{A}} is a compact Hausdorff space and every T {\displaystyle T} in A , {\displaystyle A,} G ( T ) {\displaystyle G(T)} belongs to C ( σ A ) , {\displaystyle C\left(\sigma _{A}\right),} which is the space of continuous complex-valued functions on σ A . {\displaystyle \sigma _{A}.} The range of G ( T ) {\displaystyle G(T)} is the spectrum σ ( T ) {\displaystyle \sigma (T)} and that the spectral radius is equal to max { | G ( T ) ( h ) | : h σ A } , {\displaystyle \max \left\{|G(T)(h)|:h\in \sigma _{A}\right\},} which is T . {\displaystyle \leq \|T\|.}

Theorem — Suppose A {\displaystyle A} is a closed normal subalgebra of B ( H ) {\displaystyle {\mathcal {B}}(H)} that contains the identity operator Id H {\displaystyle \operatorname {Id} _{H}} and let σ = σ A {\displaystyle \sigma =\sigma _{A}} be the maximal ideal space of A . {\displaystyle A.} Let Ω {\displaystyle \Omega } be the Borel subsets of σ . {\displaystyle \sigma .} For every T {\displaystyle T} in A , {\displaystyle A,} let G ( T ) : σ A C {\displaystyle G(T):\sigma _{A}\to \mathbb {C} } denote the Gelfand transform of T {\displaystyle T} so that G {\displaystyle G} is an injective map G : A C ( σ A ) . {\displaystyle G:A\to C\left(\sigma _{A}\right).} There exists a unique resolution of identity π : Ω A {\displaystyle \pi :\Omega \to A} that satisfies: T x , y = σ A G ( T ) d π x , y  for all  x , y H  and all  T A ; {\displaystyle \langle Tx,y\rangle =\int _{\sigma _{A}}G(T)\operatorname {d} \pi _{x,y}\quad {\text{ for all }}x,y\in H{\text{ and all }}T\in A;} the notation T = σ A G ( T ) d π {\displaystyle T=\int _{\sigma _{A}}G(T)\operatorname {d} \pi } is used to summarize this situation. Let I : Im G A {\displaystyle I:\operatorname {Im} G\to A} be the inverse of the Gelfand transform G : A C ( σ A ) {\displaystyle G:A\to C\left(\sigma _{A}\right)} where Im G {\displaystyle \operatorname {Im} G} can be canonically identified as a subspace of L ( π ) . {\displaystyle L^{\infty }(\pi ).} Let B {\displaystyle B} be the closure (in the norm topology of B ( H ) {\displaystyle {\mathcal {B}}(H)} ) of the linear span of Im π . {\displaystyle \operatorname {Im} \pi .} Then the following are true:

  1. B {\displaystyle B} is a closed subalgebra of B ( H ) {\displaystyle {\mathcal {B}}(H)} containing A . {\displaystyle A.}
  2. There exists a (linear multiplicative) isometric -isomorphism Φ : L ( π ) B {\displaystyle \Phi :L^{\infty }(\pi )\to B} extending I : Im G A {\displaystyle I:\operatorname {Im} G\to A} such that Φ f = σ A f d π {\displaystyle \Phi f=\int _{\sigma _{A}}f\operatorname {d} \pi } for all f L ( π ) . {\displaystyle f\in L^{\infty }(\pi ).}
    • Recall that the notation Φ f = σ A f d π {\displaystyle \Phi f=\int _{\sigma _{A}}f\operatorname {d} \pi } means that ( Φ f ) x , y = σ A f d π x , y {\displaystyle \langle (\Phi f)x,y\rangle =\int _{\sigma _{A}}f\operatorname {d} \pi _{x,y}} for all x , y H {\displaystyle x,y\in H} ;
    • Note in particular that T = σ A G ( T ) d π = Φ ( G ( T ) ) {\displaystyle T=\int _{\sigma _{A}}G(T)\operatorname {d} \pi =\Phi (G(T))} for all T A . {\displaystyle T\in A.}
    • Explicitly, Φ {\displaystyle \Phi } satisfies Φ ( f ¯ ) = ( Φ f ) {\displaystyle \Phi \left({\overline {f}}\right)=(\Phi f)^{*}} and Φ f = f {\displaystyle \|\Phi f\|=\|f\|^{\infty }} for every f L ( π ) {\displaystyle f\in L^{\infty }(\pi )} (so if f {\displaystyle f} is real valued then Φ ( f ) {\displaystyle \Phi (f)} is self-adjoint).
  3. If ω σ A {\displaystyle \omega \subseteq \sigma _{A}} is open and nonempty (which implies that ω Ω {\displaystyle \omega \in \Omega } ) then π ( ω ) 0. {\displaystyle \pi (\omega )\neq 0.}
  4. A bounded linear operator S B ( H ) {\displaystyle S\in {\mathcal {B}}(H)} commutes with every element of A {\displaystyle A} if and only if it commutes with every element of Im π . {\displaystyle \operatorname {Im} \pi .}

The above result can be specialized to a single normal bounded operator.

See also

References

  1. Rudin, Walter (1991). Functional Analysis (2nd ed.). New York: McGraw Hill. pp. 292–293. ISBN 0-07-100944-2.
  2. ^ Rudin 1991, pp. 316–318.
  3. ^ Rudin 1991, pp. 318–321.
  4. Rudin 1991, p. 280.
  5. Rudin 1991, pp. 321–325.
Spectral theory and -algebras
Basic concepts
Main results
Special Elements/Operators
Spectrum
Decomposition
Spectral Theorem
Special algebras
Finite-Dimensional
Generalizations
Miscellaneous
Examples
Applications
Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Categories: