Misplaced Pages

Isotopes of europium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Europium-152)

Isotopes of europium (63Eu)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Eu synth 36.9 y β Sm
Eu 47.8% 4.62×10 y α Pm
Eu synth 13.54 y ε Sm
β Gd
Eu 52.2% stable
Eu synth 8.59 y β Gd
Eu synth 4.76 y β Gd
Standard atomic weight Ar°(Eu)

Naturally occurring europium (63Eu) is composed of two isotopes, Eu and Eu, with Eu being the most abundant (52.2% natural abundance). While Eu is observationally stable (theoretically can undergo alpha decay with half-life over 5.5×10 years), Eu was found in 2007 to be unstable and undergo alpha decay. The half-life is measured to be (4.62 ± 0.95(stat.) ± 0.68(syst.)) × 10 years which corresponds to 1 alpha decay per two minutes in every kilogram of natural europium. Besides the natural radioisotope Eu, 36 artificial radioisotopes have been characterized, with the most stable being Eu with a half-life of 36.9 years, Eu with a half-life of 13.516 years, Eu with a half-life of 8.593 years, and Eu with a half-life of 4.7612 years. The majority of the remaining radioactive isotopes, which range from Eu to Eu, have half-lives that are less than 12.2 seconds. This element also has 18 metastable isomers, with the most stable being Eu (t1/2 12.8 hours), Eu (t1/2 9.3116 hours) and Eu (t1/2 96 minutes).

The primary decay mode before the most abundant stable isotope, Eu, is electron capture, and the primary mode after is beta decay. The primary decay products before Eu are isotopes of samarium and the primary products after are isotopes of gadolinium.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Eu 63 67 129.96357(54)# 1.1(5) ms
2+#
Eu 63 68 130.95775(43)# 17.8(19) ms 3/2+
Eu 63 69 131.95437(43)# 100# ms β Sm
p Sm
Eu 63 70 132.94924(32)# 200# ms β Sm 11/2−#
Eu 63 71 133.94651(21)# 0.5(2) s β Sm
β, p (rare) Pm
Eu 63 72 134.94182(32)# 1.5(2) s β Sm 11/2−#
β, p Pm
Eu 63 73 135.93960(21)# 3.3(3) s β (99.91%) Sm (7+)
β, p (.09%) Pm
Eu 0(500)# keV 3.8(3) s β (99.91%) Sm (3+)
β, p (.09%) Pm
Eu 63 74 136.93557(21)# 8.4(5) s β Sm 11/2−#
Eu 63 75 137.93371(3) 12.1(6) s β Sm (6−)
Eu 63 76 138.929792(14) 17.9(6) s β Sm (11/2)−
Eu 63 77 139.92809(6) 1.51(2) s β (95.1(7)%) Sm 1+
EC (4.9(7)%)
Eu 210(15) keV 125(2) ms IT (99%) Eu 5−#
β(1%) Sm
Eu 63 78 140.924931(14) 40.7(7) s β Sm 5/2+
Eu 96.45(7) keV 2.7(3) s IT (86%) Eu 11/2−
β (14%) Sm
Eu 63 79 141.92343(3) 2.36(10) s β (89.9(16)%) Sm 1+
EC (11.1(16)%)
Eu 460(30) keV 1.223(8) min β Sm 8−
Eu 63 80 142.920298(12) 2.59(2) min β Sm 5/2+
Eu 389.51(4) keV 50.0(5) μs 11/2−
Eu 63 81 143.918817(12) 10.2(1) s β Sm 1+
Eu 1127.6(6) keV 1.0(1) μs (8−)
Eu 63 82 144.916265(4) 5.93(4) d β Sm 5/2+
Eu 716.0(3) keV 490 ns 11/2−
Eu 63 83 145.917206(7) 4.61(3) d β Sm 4−
Eu 666.37(16) keV 235(3) μs 9+
Eu 63 84 146.916746(3) 24.1(6) d β (99.99%) Sm 5/2+
α (.0022%) Pm
Eu 63 85 147.918086(11) 54.5(5) d β (100%) Sm 5−
α (9.39×10%) Pm
Eu 63 86 148.917931(5) 93.1(4) d EC Sm 5/2+
Eu 63 87 149.919702(7) 36.9(9) y β Sm 5(−)
Eu 42.1(5) keV 12.8(1) h β (89%) Gd 0−
β (11%) Sm
IT (≤5×10%) Eu
Eu 63 88 150.9198502(26) 4.62×10 y α Pm 5/2+ 0.4781(6)
Eu 196.245(10) keV 58.9(5) μs IT Eu 11/2−
Eu 63 89 151.9217445(26) 13.537(6) y EC (72.09%) Sm 3−
β (27.9%) Gd
β (0.027%) Sm
Eu 45.5998(4) keV 9.3116(13) h β (72%) Gd 0−
β (28%) Sm
Eu 65.2969(4) keV 0.94(8) μs 1−
Eu 78.2331(4) keV 165(10) ns 1+
Eu 89.8496(4) keV 384(10) ns 4+
Eu 147.86(10) keV 96(1) min 8−
Eu 63 90 152.9212303(26) Observationally Stable 5/2+ 0.5219(6)
Eu 63 91 153.9229792(26) 8.593(4) y β (99.98%) Gd 3−
EC (.02%) Sm
Eu 68.1702(4) keV 2.2(1) μs IT Eu 2+
Eu 145.3(3) keV 46.3(4) min IT Eu (8−)
Eu 63 92 154.9228933(27) 4.7611(13) y β Gd 5/2+
Eu 63 93 155.924752(6) 15.19(8) d β Gd 0+
Eu 63 94 156.925424(6) 15.18(3) h β Gd 5/2+
Eu 63 95 157.92785(8) 45.9(2) min β Gd (1−)
Eu 63 96 158.929089(8) 18.1(1) min β Gd 5/2+
Eu 63 97 159.93197(22)# 38(4) s β Gd 1(−)
Eu 63 98 160.93368(32)# 26(3) s β Gd 5/2+#
Eu 63 99 161.93704(32)# 10.6(10) s β Gd
Eu 63 100 162.93921(54)# 7.7(4) s β Gd 5/2+#
Eu 964.5(10) keV 911(24) ns (13/2−)
Eu 63 101 163.94299(64)# 4.16(19) s β Gd
Eu 63 102 164.94572(75)# 2.163+0.139
−0.120 s
β Gd 5/2+#
Eu 63 103 165.94997(86)# 1.277+0.100
−0.145 s
β (99.37%) Gd
β, n (0.63%) Gd
Eu 63 104 166.95321(86)# 852+76
−54 ms
β (98.05%) Gd 5/2+#
β, n (1.95%) Gd
Eu 63 105 440+48
−47 ms
β (96.05%) Gd
β, n (3.95%) Gd
Eu 63 106 389+92
−88 ms
β (85.38%) Gd
β, n (14.62%) Gd
Eu 63 107 197+74
−71 ms
β Gd
β, n Gd
This table header & footer:
  1. Eu – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition


    p: Proton emission
  7. Bold italics symbol as daughter – Daughter product is nearly stable.
  8. Bold symbol as daughter – Daughter product is stable.
  9. ( ) spin value – Indicates spin with weak assignment arguments.
  10. primordial radionuclide
  11. ^ Fission product
  12. Believed to undergo α decay to Pm with a half-life over 5.5×10 years

Europium-155

Medium-lived fission products
t½
(year)
Yield
(%)
Q
(keV)
βγ
Eu  4.76 0.0803  252 βγ
Kr 10.76 0.2180  687 βγ
Cd 14.1  0.0008  316 β
Sr 28.9  4.505   2826 β
Cs 30.23 6.337   1176 βγ
Sn 43.9  0.00005 390 βγ
Sm 94.6  0.5314  77 β

Europium-155 is a fission product with a half-life of 4.76 years. It has a maximum decay energy of 252 keV. In a thermal reactor (almost all current nuclear power plants), it has a low fission product yield, about half of one percent as much as the most abundant fission products.

Eu's large neutron capture cross section (about 3900 barns for thermal neutrons, 16000 resonance integral) means that most of even the small amount produced is destroyed in the course of the nuclear fuel's burnup. Yield, decay energy, and half-life are all far less than that of Cs and Sr, so Eu is not a significant contributor to nuclear waste.

Some Eu is also produced by successive neutron capture on Eu (nonradioactive, 350 barns thermal, 1500 resonance integral, yield is about 5 times as great as Eu) and Eu (half-life 8.6 years, 1400 barns thermal, 1600 resonance integral, fission yield is extremely small because beta decay stops at Sm). However, the differing cross sections mean that both Eu and Eu are destroyed faster than they are produced.

Eu is a prolific emitter of gamma radiation.

Isotope Half-life Relative yield Thermal neutron Resonance integral
Eu-153 Stable 5 350 1500
Eu-154 8.6 years Nearly 0 1500 1600
Eu-155 4.76 years 1 3900 16000

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Europium". CIAAW. 1995.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. Belli, P.; et al. (2007). "Search for α decay of natural europium". Nuclear Physics A. 789 (1–4): 15–29. Bibcode:2007NuPhA.789...15B. doi:10.1016/j.nuclphysa.2007.03.001.
  5. Casali, N.; Nagorny, S. S.; Orio, F.; Pattavina, L.; et al. (2014). "Discovery of the Eu α decay". Journal of Physics G: Nuclear and Particle Physics. 41 (7): 075101. arXiv:1311.2834. Bibcode:2014JPhG...41g5101C. doi:10.1088/0954-3899/41/7/075101. S2CID 116920467.
  6. "Adopted Levels for Eu" (PDF). NNDC Chart of Nuclides.
  7. "Adopted Levels for Eu". NNDC Chart of Nuclides.
  8. Danevich, F. A.; Andreotti, E.; Hult, M.; Marissens, G.; Tretyak, V. I.; Yuksel, A. (2012). "Search for α decay of Eu to the first excited level of Pm using underground γ-ray spectrometry". European Physical Journal A. 48 (157): 157. arXiv:1301.3465. Bibcode:2012EPJA...48..157D. doi:10.1140/epja/i2012-12157-7. S2CID 118657922.
  9. Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (8): 140–1–140–7. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. ISSN 1434-601X. S2CID 201664098.
  10. ^ Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253.
  11. "Archived copy" (PDF). Archived from the original (PDF) on 2011-07-06. Retrieved 2011-04-02.{{cite web}}: CS1 maint: archived copy as title (link)
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: