Misplaced Pages

Hafnium nitrides

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The hafnium nitrides are the various salts produced from combining hafnium and nitrogen. The two most important such are hafnium(III) nitride, HfN; and hafnium(IV) nitride, Hf3N4. None can be prepared from hafnium oxide, but must instead be prepared from the elemental metal or a different hafnium nitride salt; attempted nitridation of the oxide gives an oxynitride instead.

HfN is refractory and generally produced as a thin film coating, although zone annealing gives the bulk material. HfN adopts the rock-salt crystal structure. The surplus hafnium electron delocalizes, so that HfN is a metal, conducting at room temperature and superconducting below 8.8 K (−443.83 °F). Its bright gold color is a cheaper alternative to gilding.

The dark red semiconductor Hf3N4 does not form at room temperature, but requires high pressure, high temperature synthesis in a diamond anvil cell. At 18 GPa (180,000 atm) and 2,800 K (4,580 °F), it adopts the cubic crystal structure and repeats according to space group I{{{1}}}3d. At lower pressures, the cubic structure is believed metastable, decaying to the orthorhombic structure of zirconium(IV) nitride. That structure forms outright at 19 GPa and 2,000 K (3,140 °F), and another metastable tetragonal structure forms at 12 GPa and 1,500 K (2,240 °F). Computational studies suggest that it may catalyze polymerization of nitrogen at very high temperatures, through a catenary anion in HfN10.

In systems with limited nitrogen, hafnium also forms Hf3N2, as well as a solid solution hafnium alloy.

References

  1. Bazhanov, D. I.; Knizhnik, A. A.; Safonov, A. A.; Bagatur’yants, A. A.; Stoker, M. W.; Korkin, A. A. (2005-02-15). "Structure and electronic properties of zirconium and hafnium nitrides and oxynitrides". Journal of Applied Physics. 97 (4). doi:10.1063/1.1851000. ISSN 0021-8979.
  2. ^ Zerr, Andreas; Miehe, Gerhard; Riedel, Ralf (2003-03-01). "Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure". Nature Materials. 2 (3): 185–189. doi:10.1038/nmat836. ISSN 1476-1122.
  3. Christensen, A. Nørlund; Kress, W.; Miura, M.; Lehner, N. (1983-07-15). "Phonon anomalies in transition-metal nitrides: HfN". Physical Review B. 28 (2): 977–981. doi:10.1103/PhysRevB.28.977. ISSN 0163-1829.
  4. ^ Kroll, Peter (2003-03-25). "Hafnium Nitride with Thorium Phosphide Structure: Physical Properties and an Assessment of the Hf-N, Zr-N, and Ti-N Phase Diagrams at High Pressures and Temperatures". Physical Review Letters. 90 (12). doi:10.1103/PhysRevLett.90.125501. ISSN 0031-9007.
  5. ^ Zhang, Jin; Oganov, Artem R.; Li, Xinfeng; Niu, Haiyang (2017-01-18). "Pressure-stabilized hafnium nitrides and their properties". Physical Review B. 95 (2). doi:10.1103/PhysRevB.95.020103. ISSN 2469-9950.
  6. Ushakov, Sergey V.; Navrotsky, Alexandra; Hong, Qi-Jun; van de Walle, Axel (26 Aug 2019) . "Carbides and nitrides of zirconium and hafnium". Materials. 2019 (12). Basel: MDPI. doi:10.3390/ma12172728.
Salts and covalent derivatives of the nitride ion
NH3
N2H4
+H
HN
H2N
He(N2)11
Li3N
LiN3
Be3N2
Be(N3)2
BN
-B
C2N2
β-C3N4
g-C3N4
CxNy
N2 NxOy
+O
N3F
N2F2
N2F4
NF3
+F
Ne
Na3N
NaN3
Mg3N2
Mg(N3)2
AlN Si3N4
-Si
PN
P3N5
-P
SxNy
SN
S2N2
S4N4
SN2H2
NCl3
ClN3
+Cl
Ar
K3N
KN3
Ca3N2
Ca(N3)2
ScN TiN
Ti3N4
VN CrN
Cr2N
MnxNy FexNy Co3N Ni3N Cu3N Zn3N2 GaN Ge3N4
-Ge
AsN
+As
Se4N4 Br3N
BrN3
+Br
Kr
RbN3 Sr3N2
Sr(N3)2
YN ZrN NbN β-Mo2N Tc Ru Rh PdN Ag3N Cd3N2 InN Sn SbN Te4N4? I3N
IN3
+I
Xe
CsN3 Ba3N2
Ba(N3)2
* LuN HfN
Hf3N4
TaN WN RexNy Os Ir Pt Au Hg3N2 Tl3N (PbNH) BiN Po At Rn
Fr Ra3N2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaN CeN PrN NdN PmN SmN EuN GdN TbN DyN HoN ErN TmN YbN
** Ac ThxNy PaN UxNy NpN PuN AmN CmN BkN Cf Es Fm Md No
Categories: