Misplaced Pages

Triphosphorus pentanitride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Triphosphorus pentanitride
Names
IUPAC name Triphosphorus pentanitride
Other names Phosphorus(V) nitride, Phosphorus nitride
Identifiers
CAS Number
3D model (JSmol)
ECHA InfoCard 100.032.018 Edit this at Wikidata
EC Number
  • 235-233-9
PubChem CID
CompTox Dashboard (EPA)
SMILES
  • N1=P23N=P45N2P1(=N4)N35
Properties
Chemical formula P3N5
Molar mass 162.955 g/mol
Appearance White solid
Density 2.77 g/cm (α-P3N5)
Melting point 850 °C (1,560 °F; 1,120 K) decomposes
Solubility in water insoluble
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

Triphosphorus pentanitride is an inorganic compound with the chemical formula P3N5. Containing only phosphorus and nitrogen, this material is classified as a binary nitride. While it has been investigated for various applications this has not led to any significant industrial uses. It is a white solid, although samples often appear colored owing to impurities.

Synthesis

Triphosphorus pentanitride can be produced by reactions between various phosphorus(V) and nitrogen anions (such as ammonia and sodium azide):

3 PCl5 + 5 NH3 → P3N5 + 15 HCl
3 PCl5 + 15 NaN3 → P3N5 + 15 NaCl + 20 N2

The reaction of the elements is claimed to produce a related material. Similar methods are used to prepared boron nitride (BN) and silicon nitride (Si3N4); however the products are generally impure and amorphous.

Crystalline samples have been produced by the reaction of ammonium chloride and hexachlorocyclotriphosphazene or phosphorus pentachloride.

(NPCl2)3 + 2 [NH4]Cl → P3N5 + 8 HCl
3 PCl5 + 5 [NH4]Cl → P3N5 + 20 HCl

P3N5 has also been prepared at room temperature, by a reaction between phosphorus trichloride and sodium amide.

3 PCl3 + 5 NaNH2 → P3N5 + 5 NaCl + 4 HCl + 3 H2

Reactions

P3N5 is thermally less stable than either BN or Si3N4, with decomposition to the elements occurring at temperatures above 850 °C:

P3N5 → 3 PN + N2
4 PN → P4 + 2 N2

It is resistant to weak acids and bases, and insoluble in water at room temperature, however it hydrolyzes upon heating to form the ammonium phosphate salts [NH4]2HPO4 and [NH4]H2PO4.

Triphosphorus pentanitride reacts with lithium nitride and calcium nitride to form the corresponding salts of PN7−4 and PN4−3. Heterogenous ammonolyses of triphosphorus pentanitride gives imides such as HPN2 and HP4N7. It has been suggested that these compounds may have applications as solid electrolytes and pigments.

Structure and properties

Several polymorphs are known for triphosphorus pentanitride. The alpha‑form of triphosphorus pentanitride (α‑P3N5) is encountered at atmospheric pressure and exists at pressures up to 11 GPa, at which point it converts to the gamma‑variety (γ‑P3N5) of the compound. Upon heating γ‑P3N5 to temperatures above 2000 K at pressures between 67 and 70 GPa, it transforms into δ-P3N5. The release of pressure on the δ-P3N5 polymorph does not revert it back into γ‑P3N5 or α‑P3N5. Instead, at pressures below 7 GPa, δ-P3N5 converts into a fourth form of triphosphorus pentanitride, α′‑P3N5.

Polymorph Density (g/cm)
α‑P3N5 2.77
α′‑P3N5 3.11
γ‑P3N5 3.65
δ‑P3N5 5.27 (at 72 GPa)

The structure of all polymorphs of triphosphorus pentanitride was determined by single crystal X-ray diffraction. α‑P3N5 and α′‑P3N5 are formed of a network structure of PN4 tetrahedra with 2- and 3-coordinated nitrides, γ‑P3N5 is composed of both PN4 and PN5 polyhedra while δ-P3N5 is composed exclusively of corner- and edge-sharing PN6 octahedra. δ-P3N5 is the most incompressible triphosphorus pentanitride, having a bulk modulus of 313 GPa.

Potential applications

Triphosphorus pentanitride has no commercial applications, although it found use as a gettering material for incandescent lamps, replacing various mixtures containing red phosphorus in the late 1960s. The lighting filaments are dipped into a suspension of P3N5 prior to being sealed into the bulb. After bulb closure, but while still on the pump, the lamps are lit, causing the P3N5 to thermally decompose into its constituent elements. Much of this is removed by the pump but enough P4 vapor remains to react with any residual oxygen inside the bulb. Once the vapor pressure of P4 is low enough, either filler gas is admitted to the bulb prior to sealing off or, if a vacuum atmosphere is desired, the bulb is sealed off at that point. The high decomposition temperature of P3N5 allows sealing machines to run faster and hotter than was possible using red phosphorus.

Related halogen containing cyclic polymers, trimeric hexabromophosphazene (PNBr2)3 (melting point 192 °C) and tetrameric octabromophosphazene (PNBr2)4 (melting point 202 °C) find similar lamp gettering applications for tungsten halogen lamps, where they perform the dual processies of gettering and precise halogen dosing.

Triphosphorus pentanitride has also been investigated as a semiconductor for applications in microelectronics, particularly as a gate insulator in metal-insulator-semiconductor devices.

As a fuel in pyrotechnic obscurant mixtures, it offers some benefits over the more commonly used red phosphorus, owing mainly to its higher chemical stability. Unlike red phosphorus, P3N5 can be safely mixed with strong oxidizers, even potassium chlorate. While these mixtures can burn up to 200 times faster than state-of-the-art red phosphorus mixtures, they are far less sensitive to shock and friction. Additionally, P3N5 is much more resistant to hydrolysis than red phosphorus, giving pyrotechnic mixtures based on it greater stability under long-term storage.

Patents have been filed for the use of triphosphorus pentanitride in fire fighting measures.

See also

References

  1. ^ Schnick, Wolfgang (1 June 1993). "Solid-State Chemistry with Nonmetal Nitrides" (PDF). Angewandte Chemie International Edition in English. 32 (6): 806–818. doi:10.1002/anie.199308061.
  2. Vepřek, S.; Iqbal, Z.; Brunner, J.; Schärli, M. (1 March 1981). "Preparation and properties of amorphous phosphorus nitride prepared in a low-pressure plasma". Philosophical Magazine B. 43 (3): 527–547. Bibcode:1981PMagB..43..527V. doi:10.1080/01418638108222114.
  3. Meng, Zhaoyu; Peng, Yiya; Yang, Zhiping; Qian, Yitai (1 January 2000). "Synthesis and Characterization of Amorphous Phosphorus Nitride". Chemistry Letters. 29 (11): 1252–1253. doi:10.1246/cl.2000.1252.
  4. Schnick, Wolfgang; Lücke, Jan; Krumeich, Frank (1996). "Phosphorus Nitride P3N5: Synthesis, Spectroscopic, and Electron Microscopic Investigations". Chemistry of Materials. 8: 281–286. doi:10.1021/cm950385y.
  5. Chen, Luyang; Gu, Yunle; Shi, Liang; Yang, Zeheng; Ma, Jianhua; Qian, Yitai (2004). "Room temperature route to phosphorus nitride hollow spheres". Inorganic Chemistry Communications. 7 (5): 643. doi:10.1016/j.inoche.2004.03.009.
  6. Schnick, Wolfgang (1993). "Phosphorus(V) Nitrides: Preparation, Properties, and Possible Applications of New Solid State Materials with Structural Analogies to Phosphates and Silicates". Phosphorus, Sulfur, and Silicon and the Related Elements. 76 (1–4): 183–186. doi:10.1080/10426509308032389.
  7. ^ Horstmann, Stefan; Irran, Elisabeth; Schnick, Wolfgang (1997). "Synthesis and Crystal Structure of Phosphorus(V) Nitrideα-P3N5". Angewandte Chemie International Edition in English. 36 (17): 1873–1875. doi:10.1002/anie.199718731.
  8. ^ Landskron, Kai; Huppertz, Hubert; Senker, Jürgen; Schnick, Wolfgang (2001). "High-Pressure Synthesis of γ-P3N5 at 11 GPa and 1500 °C in a Multianvil Assembly: A Binary Phosphorus(V) Nitride with a Three-Dimensional Network Structure from PN4 Tetrahedra and Tetragonal PN5 Pyramids". Angewandte Chemie. 40 (14): 2643–2645. doi:10.1002/1521-3773(20010716)40:14<2643::AID-ANIE2643>3.0.CO;2-T.
  9. ^ Laniel, Dominique; Trybel, Florian; Néri, Adrien; Yin, Yuqing; Aslandukov, Andrey; Fedotenko, Timofey; Khandarkhaeva, Saiana; Tasnádi, Ferenc; Chariton, Stella; Giacobbe, Carlotta; Bright, Eleanor Lawrence; Hanfland, Michael; Prakapenka, Vitali; Schnick, Wolfgang; Abrikosov, Igor A. (2022-11-07). "Revealing Phosphorus Nitrides up to the Megabar Regime: Synthesis of α′-P 3 N 5, δ-P 3 N 5 and PN 2". Chemistry – A European Journal. 28 (62): e202201998. doi:10.1002/chem.202201998. ISSN 0947-6539. PMC 9827839. PMID 35997073. S2CID 251743071.
  10. S.T. Henderson and A.M. Marsden, Lamps and Lighting 2nd Ed., Edward Arnlold Press, 1975, ISBN 0 7131 3267 1
  11. Hirota, Yukihiro (1982). "Chemical vapor deposition and characterization of phosphorus nitride (P3N5) gate insulators for InP metal-insulator-semiconductor devices". Journal of Applied Physics. 53 (7): 5037–5043. Bibcode:1982JAP....53.5037H. doi:10.1063/1.331380.
  12. Jeong, Yoon-Ha; Choi, Ki-Hwan; Jo, Seong-Kue; Kang, Bongkoo (1995). "Effects of Sulfide Passivation on the Performance of GaAs MISFETs with Photo-CVD Grown P3N5 Gate Insulators". Japanese Journal of Applied Physics. 34 (Part 1, No. 2B): 1176–1180. Bibcode:1995JaJAP..34.1176J. doi:10.1143/JJAP.34.1176. S2CID 67837168.
  13. Koch, Ernst-Christian; Cudziło, Stanisław (2016), "Safer Pyrotechnic Obscurants Based on Phosphorus(V) Nitride", Angewandte Chemie International Edition, 55 (49): 15439–15442, doi:10.1002/anie.201609532, PMID 27862760
  14. Phosphorus nitride agents to protect against fires and explosions
  15. Manufacture of flame-retardant regenerated cellulose fibres, December 20, 1977
Phosphorus compounds
Phosphides
Other compounds
Salts and covalent derivatives of the nitride ion
NH3
N2H4
+H
HN
H2N
He(N2)11
Li3N
LiN3
Be3N2
Be(N3)2
BN
-B
C2N2
β-C3N4
g-C3N4
CxNy
N2 NxOy
+O
N3F
N2F2
N2F4
NF3
+F
Ne
Na3N
NaN3
Mg3N2
Mg(N3)2
AlN Si3N4
-Si
PN
P3N5
-P
SxNy
SN
S2N2
S4N4
SN2H2
NCl3
ClN3
+Cl
Ar
K3N
KN3
Ca3N2
Ca(N3)2
ScN TiN
Ti3N4
VN CrN
Cr2N
MnxNy FexNy Co3N Ni3N Cu3N Zn3N2 GaN Ge3N4
-Ge
AsN
+As
Se4N4 Br3N
BrN3
+Br
Kr
RbN3 Sr3N2
Sr(N3)2
YN ZrN NbN β-Mo2N Tc Ru Rh PdN Ag3N Cd3N2 InN Sn SbN Te4N4? I3N
IN3
+I
Xe
CsN3 Ba3N2
Ba(N3)2
* LuN HfN
Hf3N4
TaN WN RexNy Os Ir Pt Au Hg3N2 Tl3N (PbNH) BiN Po At Rn
Fr Ra3N2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaN CeN PrN NdN PmN SmN EuN GdN TbN DyN HoN ErN TmN YbN
** Ac ThxNy PaN UxNy NpN PuN AmN CmN BkN Cf Es Fm Md No
Categories: