Misplaced Pages

Anderson–Kadec theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Kadec norm) All infinite-dimensional, separable Banach spaces are homeomorphic

In mathematics, in the areas of topology and functional analysis, the Anderson–Kadec theorem states that any two infinite-dimensional, separable Banach spaces, or, more generally, Fréchet spaces, are homeomorphic as topological spaces. The theorem was proved by Mikhail Kadec (1966) and Richard Davis Anderson.

Statement

Every infinite-dimensional, separable Fréchet space is homeomorphic to R N , {\displaystyle \mathbb {R} ^{\mathbb {N} },} the Cartesian product of countably many copies of the real line R . {\displaystyle \mathbb {R} .}

Preliminaries

Kadec norm: A norm {\displaystyle \|\,\cdot \,\|} on a normed linear space X {\displaystyle X} is called a Kadec norm with respect to a total subset A X {\displaystyle A\subseteq X^{*}} of the dual space X {\displaystyle X^{*}} if for each sequence x n X {\displaystyle x_{n}\in X} the following condition is satisfied:

  • If lim n x ( x n ) = x ( x 0 ) {\displaystyle \lim _{n\to \infty }x^{*}\left(x_{n}\right)=x^{*}(x_{0})} for x A {\displaystyle x^{*}\in A} and lim n x n = x 0 , {\displaystyle \lim _{n\to \infty }\left\|x_{n}\right\|=\left\|x_{0}\right\|,} then lim n x n x 0 = 0. {\displaystyle \lim _{n\to \infty }\left\|x_{n}-x_{0}\right\|=0.}

Eidelheit theorem: A Fréchet space E {\displaystyle E} is either isomorphic to a Banach space, or has a quotient space isomorphic to R N . {\displaystyle \mathbb {R} ^{\mathbb {N} }.}

Kadec renorming theorem: Every separable Banach space X {\displaystyle X} admits a Kadec norm with respect to a countable total subset A X {\displaystyle A\subseteq X^{*}} of X . {\displaystyle X^{*}.} The new norm is equivalent to the original norm {\displaystyle \|\,\cdot \,\|} of X . {\displaystyle X.} The set A {\displaystyle A} can be taken to be any weak-star dense countable subset of the unit ball of X {\displaystyle X^{*}}

Sketch of the proof

In the argument below E {\displaystyle E} denotes an infinite-dimensional separable Fréchet space and {\displaystyle \simeq } the relation of topological equivalence (existence of homeomorphism).

A starting point of the proof of the Anderson–Kadec theorem is Kadec's proof that any infinite-dimensional separable Banach space is homeomorphic to R N . {\displaystyle \mathbb {R} ^{\mathbb {N} }.}

From Eidelheit theorem, it is enough to consider Fréchet space that are not isomorphic to a Banach space. In that case there they have a quotient that is isomorphic to R N . {\displaystyle \mathbb {R} ^{\mathbb {N} }.} A result of Bartle-Graves-Michael proves that then E Y × R N {\displaystyle E\simeq Y\times \mathbb {R} ^{\mathbb {N} }} for some Fréchet space Y . {\displaystyle Y.}

On the other hand, E {\displaystyle E} is a closed subspace of a countable infinite product of separable Banach spaces X = n = 1 X i {\textstyle X=\prod _{n=1}^{\infty }X_{i}} of separable Banach spaces. The same result of Bartle-Graves-Michael applied to X {\displaystyle X} gives a homeomorphism X E × Z {\displaystyle X\simeq E\times Z} for some Fréchet space Z . {\displaystyle Z.} From Kadec's result the countable product of infinite-dimensional separable Banach spaces X {\displaystyle X} is homeomorphic to R N . {\displaystyle \mathbb {R} ^{\mathbb {N} }.}

The proof of Anderson–Kadec theorem consists of the sequence of equivalences R N ( E × Z ) N E N × Z N E × E N × Z N E × R N Y × R N × R N Y × R N E {\displaystyle {\begin{aligned}\mathbb {R} ^{\mathbb {N} }&\simeq (E\times Z)^{\mathbb {N} }\\&\simeq E^{\mathbb {N} }\times Z^{\mathbb {N} }\\&\simeq E\times E^{\mathbb {N} }\times Z^{\mathbb {N} }\\&\simeq E\times \mathbb {R} ^{\mathbb {N} }\\&\simeq Y\times \mathbb {R} ^{\mathbb {N} }\times \mathbb {R} ^{\mathbb {N} }\\&\simeq Y\times \mathbb {R} ^{\mathbb {N} }\\&\simeq E\end{aligned}}}

See also

Notes

  1. Bessaga & Pełczyński 1975, p. 189

References

  • Bessaga, C.; Pełczyński, A. (1975), Selected Topics in Infinite-Dimensional Topology, Monografie Matematyczne, Warszawa: Panstwowe wyd. naukowe.
  • Torunczyk, H. (1981), Characterizing Hilbert Space Topology, Fundamenta Mathematicae, pp. 247–262.
Functional analysis (topicsglossary)
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Topological vector spaces (TVSs)
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Categories: