Misplaced Pages

Manganese(II) oxide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Manganese(II) oxide
Manganese(II) oxide
Names
IUPAC name Manganese(II) oxide
Other names Manganous oxide
Manganosite
manganese monoxide
oxomanganese
Identifiers
CAS Number
3D model (JSmol)
ECHA InfoCard 100.014.269 Edit this at Wikidata
PubChem CID
RTECS number
  • OP0900000
UNII
CompTox Dashboard (EPA)
SMILES
  • .
Properties
Chemical formula MnO
Molar mass 70.9374 g/mol
Appearance green crystals or powder
Density 5.43 g/cm
Melting point 1,945 °C (3,533 °F; 2,218 K)
Solubility in water insoluble
Solubility soluble in acid
Magnetic susceptibility (χ) +4850.0·10 cm/mol
Refractive index (nD) 2.16
Structure
Crystal structure Halite (cubic), cF8
Space group Fm3m, No. 225
Coordination geometry Octahedral (Mn); octahedral (O)
Thermochemistry
Std molar
entropy
(S298)
60 J·mol·K
Std enthalpy of
formation
fH298)
−385 kJ·mol
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1 0 0
Flash point Non-flammable
Related compounds
Other anions Manganese(II) fluoride
Manganese(II) sulfide
Manganese(II) selenide
Manganese(II) telluride
Other cations Iron(II) oxide
Related manganese oxides Manganese(II,III) oxide
Manganese(III) oxide
Manganese dioxide
Manganese heptoxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Manganese(II) oxide is an inorganic compound with chemical formula MnO. It forms green crystals. The compound is produced on a large scale as a component of fertilizers and food additives.

Structure, stoichiometry, reactivity

Like many monoxides, MnO adopts the rock salt structure, where cations and anions are both octahedrally coordinated. Also like many oxides, manganese(II) oxide is often nonstoichiometric: its composition can vary from MnO to MnO1.045.

Below 118 K MnO is antiferromagnetic. MnO has the distinction of being one of the first compounds to have its magnetic structure determined by neutron diffraction, the report appearing in 1951. This study showed that the Mn ions form a face centered cubic magnetic sub-lattice where there are ferromagnetically coupled sheets that are anti-parallel with adjacent sheets.

Manganese(II) oxide undergoes the chemical reactions typical of an ionic oxide. Upon treatment with acids, it converts to the corresponding manganese(II) salt and water. Oxidation of manganese(II) oxide gives manganese(III) oxide.

Preparation and occurrence

MnO occurs in nature as the rare mineral manganosite.
It is prepared commercially by reduction of MnO2 with hydrogen, carbon monoxide or methane, e.g.:

MnO2 + H2 → MnO + H2O
MnO2 + CO → MnO + CO2

Upon heating to 450 °C, manganese(II) nitrate gives a mixture of oxides, MnO2-x, which can be reduced to the monoxide with hydrogen at ≥750 °C. MnO is particularly stable and resists further reduction. MnO can also be prepared by heating the carbonate:

MnCO3 → MnO + CO2

This calcining process is conducted anaerobically, lest Mn2O3 form.

An alternative route, mostly for demonstration purposes, is the oxalate method, which also applicable to the synthesis of ferrous oxide and stannous oxide. Upon heating in an oxygen-free atmosphere (usually CO2), manganese(II) oxalate decomposes into MnO:

MnC2O4·2H2O → MnO + CO2 + CO + 2 H2O

Applications

Together with manganese sulfate, MnO is a component of fertilizers and food additives. Many thousands of tons are consumed annually for this purpose. Other uses include: a catalyst in the manufacture of allyl alcohol, ceramics, paints, colored glass, bleaching tallow and textile printing.

References

  1. ^ Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN 978-0-618-94690-7.
  2. ^ Arno H. Reidies "Manganese Compounds" Ullmann's Encyclopedia of Chemical Technology 2007; Wiley-VCH, Weinheim. doi:10.1002/14356007.a16_123
  3. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  4. J.E Greedon, (1994), Magnetic oxides in Encyclopedia of Inorganic chemistry Ed. R. Bruce King, John Wiley & Sons ISBN 0-471-93620-0
  5. Shull, C. G.; Strauser, W. A.; Wollan, E. O. (1951-07-15). "Neutron Diffraction by Paramagnetic and Antiferromagnetic Substances". Physical Review. 83 (2). American Physical Society (APS): 333–345. doi:10.1103/physrev.83.333. ISSN 0031-899X.
  6. H. Lux (1963). "Manganeses(II) Oxide". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 2pages=1455. NY, NY: Academic Press.
  7. Wellbeloved, David B.; Craven, Peter M.; Waudby, John W. (2000). "Manganese and Manganese Alloys". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a16_077. ISBN 3527306730.
  8. W.H. McCarroll (1994) Oxides- Solid State Chemistry, Encyclopedia of Inorganic Chemistry Ed. R. Bruce King, John Wiley & Sons ISBN 0-471-93620-0
  9. Arthur Sutcliffe (1930) Practical Chemistry for Advanced Students (1949 Ed.), John Murray - London.
Manganese compounds
Manganese(−I)
Manganese(0)
Manganese(I)
Manganese(II)
Manganese(II,III)
Manganese(II,IV)
Manganese(III)
Manganese(IV)
Manganese(V)
Manganese(VI)
Manganese(VII)
Oxides
Mixed oxidation states
+1 oxidation state
+2 oxidation state
+3 oxidation state
+4 oxidation state
+5 oxidation state
+6 oxidation state
+7 oxidation state
+8 oxidation state
Related
Oxides are sorted by oxidation state. Category:Oxides
Categories: