Misplaced Pages

Manganese(IV) fluoride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Manganese(IV) fluoride
Names
IUPAC name manganese tetrafluoride
Other names manganese(IV) fluoride
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/4FH.Mn/ h4*1H;/q;;;;+4/p-4Key: KWKYNMDHPVYLQQ-UHFFFAOYSA-J
  • InChI=1/4FH.Mn/h4*1H;/q;;;;+4/p-4Key: KWKYNMDHPVYLQQ-XBHQNQODAK
SMILES
  • ....
Properties
Chemical formula MnF4
Molar mass 130.93 g mol
Appearance blue solid
Density 3.61 g cm (calc.)
Melting point 70 °C (158 °F; 343 K) decomposes
Solubility in water reacts violently
Structure
Crystal structure tetragonal, tI80
Space group I41/a (No. 88)
Lattice constant a = 1263 pm, c = 604.9 pm
Related compounds
Other cations Manganese(II) fluoride
Manganese(III) fluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

Manganese tetrafluoride, MnF4, is the highest fluoride of manganese. It is a powerful oxidizing agent and is used as a means of purifying elemental fluorine.

Preparation

Manganese tetrafluoride was first unequivocally prepared in 1961 by the reaction of manganese(II) fluoride (or other Mn compounds) with a stream of fluorine gas at 550 °C: the MnF4 sublimes into the gas stream and condenses onto a cold finger. This is still the commonest method of preparation, although the sublimation can be avoided by operating at increased fluorine pressure (4.5–6 bar at 180–320 °C) and mechanically agitating the powder to avoid sintering of the grains. The reaction can also be carried out starting from manganese powder in a fluidized bed.

Other preparations of MnF4 include the fluorination of MnF2 with krypton difluoride, or with F2 in liquid hydrogen fluoride solution under ultraviolet light. Manganese tetrafluoride has also been prepared (but not isolated) in an acid–base reaction between antimony pentafluoride and K2MnF6 as part of a chemical synthesis of elemental fluorine.

K2MnF6 + 2 SbF5 → MnF4 + 2 KSbF6

Chemistry

Decomposition

Manganese tetrafluoride is in equilibrium with manganese(III) fluoride and elemental fluorine:

MnF4 ⇌ MnF3 + ⁠1/2⁠ F2

Decomposition is favoured by increasing temperature, and disfavoured by the presence of fluorine gas, but the exact parameters of the equilibrium are unclear, with some sources saying that MnF4 will decompose slowly at room temperature, others placing a practical lower temperature limit of 70 °C, and another claiming that MnF4 is essentially stable up to 320 °C. The equilibrium pressure of fluorine above MnF4 at room temperature has been estimated at 10 Pa (10 bar), and the enthalpy change of reaction at +44(8) kJ mol.

Other reactions

Manganese tetrafluoride reacts violently with water and even with sodium-dried petroleum ether. It immediately decomposes on contact with moist air.

Reaction with alkali metal fluorides or concentrated hydrofluoric acid gives the yellow hexafluoromanganate(IV) anion .

Applications

The main application of manganese tetrafluoride is in the purification of elemental fluorine. Fluorine gas is produced by electrolysis of anhydrous hydrogen fluoride (with a small amount of potassium fluoride added as a support electrolyte) in a Moissan cell. The technical product is contaminated with HF, much of which can be removed by passing the gas over solid KF, but also with oxygen (from traces of water) and possibly heavy-metal fluorides such as arsenic pentafluoride (from contamination of the HF). These contaminants are particularly problematic for the semiconductor industry, which uses high-purity fluorine for etching silicon wafers. Further impurities, such as iron, nickel, gallium and tungsten compounds, can be introduced if unreacted fluorine is recycled.

The technical-grade fluorine is purified by reacting it with MnF3 to form manganese tetrafluoride. As this stage, any heavy metals present will form involatile complex fluorides, while the HF and O2 are unreactive. Once the MnF3 has been converted, the excess gas is vented for recycling, carrying the remaining gaseous impurities with it. The MnF4 is then heated to 380 °C to release fluorine at purities of up to 99.95%, reforming MnF3, which can be reused. By placing two reactors in parallel, the purification process can be made continuous, with one reactor taking in technical fluorine while the other delivers high-grade fluorine. Alternatively, the manganese tetrafluoride can be isolated and transported to where the fluorine is needed, at lower cost and greater safety than pressurized fluorine gas.

Fluoromanganate(IV) complexes

The yellow hexafluoromanganate(2−) of alkali metal and alkaline earth metal cations have been known since 1899, and can be prepared by the fluorination of MnF2 in the presence of the fluoride of the appropriate cation. They are much more stable than manganese tetrafluoride. Potassium hexafluoromanganate(IV), K2MnF6, can also be prepared by the controlled reduction of potassium permanganate in 50% aqueous hydrofluoric acid.

2 KMnO4 + 2 KF + 10 HF + 3 H2O2 → 2 K2MnF6 + 8 H2O + 3 O2

The pentafluoromanganate(1−) salts of potassium, rubidium and caesium, MMnF5, can be prepared by fluorination of MMnF3 or by the reaction of with MF. The lemon-yellow heptafluoromanganate(3−) salts of the same metals, M3MnF7, have also been prepared.

When potassium hexafluoromanganate is doped into potassium fluorosilicate it forms a narrow band red phosphor.

Notes and references

Notes

  1. The space group has also been given as R3c (No. 161) or R3c (No. 167); a β-form appears to crystallize in the rhombohedral system.
  2. Reports of the preparation of MnF4 date back to the nineteenth century, but are inconsistent with the now-known chemistry of the genuine compound.
  3. These two results are inconsistent with one another, as ΔrH would have to be about +80 kJ mol for peq(F2) ≈ 10 bar at 298 K, given that the overwhelming contribution to ΔrS is S(F2) = 202.791(5) J K mol. The quoted value of ΔrH is consistent with most reported decomposition temperatures.

References

  1. ^ Müller, B. G.; Serafin, M. (1987), "Die Kristallstruktur von Mangantetrafluorid", Z. Naturforsch. B, 42 (9): 1102–6, doi:10.1515/znb-1987-0908, S2CID 95703093.
  2. ^ Hoppe, Rudolf; Dähne, Wolfgang; Klemm, Wilhelm (1961), "Mangantetrafluorid, MnF4", Naturwissenschaften, 48 (11): 429, Bibcode:1961NW.....48..429H, doi:10.1007/BF00621676, S2CID 30724467.
  3. ^ WO patent 2006033480, Torisu, Junichi; Oka, Masakazu & Kuznetsov, Andrey Sergeyevich et al., "Method of manufacturing manganese tetrafluoride", published 2006-03-30, assigned to Astor Electronics and Showa Denko .
  4. Edwards, A. J. (1983), "Solid-State Structures of the Binary Fluorides of the Transition Metals", Adv. Inorg. Chem. Radiochem., Advances in Inorganic Chemistry, 27: 83–112, doi:10.1016/S0898-8838(08)60105-1, ISBN 9780120236275.
  5. ^ WO patent 2009074562, Seseke-Koyro, Ulrich; Garcia-Juan, Placido & Palsherm, Stefan et al., "Process for the purification of elemental fluorine", published 2009-06-18, assigned to Solvay Fluor .
  6. Melville, W. H. (1876), "Contribution towards the History of the Fluorides of Manganese", Proc. Am. Acad. Arts Sci., 12: 228–34, doi:10.2307/25138452, JSTOR 25138452.
  7. Hoppe, Rudolf; Dähne, Wolfgang; Klemm, Wilhelm (1962), "Mangantetrafluorid mit einem Anhang über LiMnF5 und LiMnF4", Justus Liebigs Ann. Chem., 658 (1): 1–5, doi:10.1002/jlac.19626580102.
  8. ^ WO application 2009074560, Seseke-Koyro, Ulrich; Garcia-Juan, Placido & Palsherm, Stefan et al., "Method for preparing manganese tetrafluoride", published 2009-06-18, assigned to Solvay Fluor .
  9. Roesky, H.; Glemser, O. (1963), "A New Preparation of Manganese Tetrafluoride", Angew. Chem. Int. Ed. Engl., 2 (10): 626, doi:10.1002/anie.196306262.
  10. Roesky, Herbert W.; Glemser, Oskar; Hellberg, Karl-Heinz (1965), "Darstellung von Metallfluoriden in der Wirbelschicht", Chem. Ber., 98 (6): 2046–48, doi:10.1002/cber.19650980642.
  11. Lutar, Karel; Jesih, Adolf; Žemva, Boris (1988), "KrF2/MnF4 adducts from KrF2/MnF2 interaction in HF as a route to high purity MnF4", Polyhedron, 7 (13): 1217–19, doi:10.1016/S0277-5387(00)81212-7.
  12. ^ Mazej, Z. (2002), "Room temperature syntheses of MnF3, MnF4 and hexafluoromanganete(IV) salts of alkali cations", J. Fluorine Chem., 114 (1): 75–80, doi:10.1016/S0022-1139(01)00566-8.
  13. ^ Christe, Karl O. (1986), "Chemical synthesis of elemental fluorine", Inorg. Chem., 25 (21): 3721–24, doi:10.1021/ic00241a001.
  14. Cotton, F. Albert; Wilkinson, Geoffrey (1980), Advanced Inorganic Chemistry (4th ed.), New York: Wiley, p. 745, ISBN 0-471-02775-8.
  15. Housecroft, Catherine E.; Sharpe, Alan G. (2007), Inorganic Chemistry (3rd ed.), New York: Prentice Hall, p. 710, ISBN 978-0131755536.
  16. Rakov, E. G.; Khaustov, S. V.; Pomadchin, S. A. (1997), "Thermal Decomposition and Pyrohydrolysis of Manganese Tetrafluoride", Russ. J. Inorg. Chem., 42 (11): 1646–49.
  17. ^ Adelhelm, M.; Jacob, E. (1991), "MnF4: preparation and properties", J. Fluorine Chem., 54 (1–3): 21, doi:10.1016/S0022-1139(00)83531-9.
  18. Ehlert, T. C.; Hsia, M. (1972), "Mass spectrometric and thermochemical studies of the manganese fluorides", J. Fluorine Chem., 2 (1): 33–51, doi:10.1016/S0022-1139(00)83113-9.
  19. Cox, J. D.; Wagman, D. D.; Medvedev, V. A. (1989), CODATA Key Values for Thermodynamics, New York: Hemisphere, ISBN 0891167587.
  20. Weinland, R. F.; Lauenstein, O. (1899), "Über Fluormanganite", Z. Anorg. Allg. Chem., 20: 40, doi:10.1002/zaac.620200106.
  21. Hoppe, Rudolf; Blinne, Klaus (1957), "Hexafluoromanganate IV der Elemente Ba, Sr, Ca und Mg", Z. Anorg. Allg. Chem., 291 (5–6): 269–75, doi:10.1002/zaac.19572910507.
  22. ^ Hoppe, Rudolf; Liebe, Werner; Dähne, Wolfgang (1961), "Über Fluoromanganate der Alkalimetalle", Z. Anorg. Allg. Chem., 307 (5–6): 276–89, doi:10.1002/zaac.19613070507.
  23. Bode, Hans; Jenssen, H.; Bandte, F. (1953), "Über eine neue Darstellung des Kalium-hexafluoromanganats(IV)", Angew. Chem., 65 (11): 304, doi:10.1002/ange.19530651108.
  24. ^ Chaudhuri, M. K.; Das, J. C.; Dasgupta, H. S. (1981), "Reactions of KMnO4—A novel method of preparation of pentafluoromanganate(IV)[MnF5]", J. Inorg. Nucl. Chem., 43 (1): 85–87, doi:10.1016/0022-1902(81)80440-X.
  25. Hofmann, B.; Hoppe, R. (1979), "Zur Kenntnis des (NH4)3SiF7-Typs. Neue Metallfluoride A3MF7 mit M = Si, Ti, Cr, Mn, Ni und A = Rb, Cs", Z. Anorg. Allg. Chem., 458 (1): 151–62, doi:10.1002/zaac.19794580121.
  26. Verstraete, Reinert; Sijbom, Heleen F.; Joos, Jonas J.; Korthout, Katleen; Poelman, Dirk; Detavernier, Christophe; Smet, Philippe F. (2018), "Red Mn4+-Doped Fluoride Phosphors: Why Purity Matters" (PDF), ACS Applied Materials & Interfaces, 10 (22): 18845–18856, doi:10.1021/acsami.8b01269, PMID 29750494

Further reading

Manganese compounds
Manganese(−I)
Manganese(0)
Manganese(I)
Manganese(II)
Manganese(II,III)
Manganese(II,IV)
Manganese(III)
Manganese(IV)
Manganese(V)
Manganese(VI)
Manganese(VII)
Salts and covalent derivatives of the fluoride ion
HF ?HeF2
LiF BeF2 BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2 Ne
NaF MgF2 AlF
AlF3
SiF4 P2F4
PF3
PF5
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KF CaF
CaF2
ScF3 TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2 GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbF SrF
SrF2
YF3 ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2 InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsF BaF2   LuF3 HfF4 TaF5 WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
?PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrF RaF2   LrF3 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaF3 CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3 SmF
SmF2
SmF3
EuF2
EuF3
GdF3 TbF3
TbF4
DyF2
DyF3
DyF4
HoF3 ErF3 TmF2
TmF3
YbF2
YbF3
AcF3 ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
Fm Md No
Categories: