Misplaced Pages

Xenon difluoride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Xenon difluoride
XeF 2 crystals. 1962.
Xenon difluoride
Xenon difluoride
Names
IUPAC names Xenon difluoride
Xenon(II) fluoride
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.850 Edit this at Wikidata
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/F2Xe/c1-3-2Key: IGELFKKMDLGCJO-UHFFFAOYSA-N
  • InChI=1/F2Xe/c1-3-2Key: IGELFKKMDLGCJO-UHFFFAOYAE
SMILES
  • FF
Properties
Chemical formula F2Xe
Molar mass 169.290 g·mol
Appearance White solid
Density 4.32 g/cm, solid
Melting point 128.6 °C (263.5 °F; 401.8 K)
Solubility in water 25 g/L (0 °C)
Vapor pressure 6.0×10 Pa
Structure
Crystal structure parallel linear XeF2 units
Molecular shape Linear
Dipole moment 0 D
Thermochemistry
Std molar
entropy
(S298)
254 J·mol·K
Std enthalpy of
formation
fH298)
−108 kJ·mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Corrosive to exposed tissues. Releases toxic compounds on contact with moisture.
GHS labelling:
Pictograms GHS05: CorrosiveGHS06: ToxicGHS03: Oxidizing
Signal word Danger
Hazard statements H272, H301, H314, H330
Precautionary statements P210, P220, P221, P260, P264, P270, P271, P280, P284, P301+P310+P330, P303+P361+P353, P304+P340+P310, P305+P351+P338, P331, P363, P370+P378, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazard OX: Oxidizer. E.g. potassium perchlorate
3 0 1OX
Safety data sheet (SDS) PELCHEM MSDS
Related compounds
Other anions Xenon dichloride
Xenon dibromide
Other cations Krypton difluoride
Radon difluoride
Related compounds Xenon tetrafluoride
Xenon hexafluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Xenon difluoride is a powerful fluorinating agent with the chemical formula XeF
2, and one of the most stable xenon compounds. Like most covalent inorganic fluorides it is moisture-sensitive. It decomposes on contact with water vapor, but is otherwise stable in storage. Xenon difluoride is a dense, colourless crystalline solid.

It has a nauseating odour and low vapor pressure.

Structure

Xenon difluoride is a linear molecule with an Xe–F bond length of 197.73±0.15 pm in the vapor stage, and 200 pm in the solid phase. The packing arrangement in solid XeF
2 shows that the fluorine atoms of neighbouring molecules avoid the equatorial region of each XeF
2 molecule. This agrees with the prediction of VSEPR theory, which predicts that there are 3 pairs of non-bonding electrons around the equatorial region of the xenon atom.

At high pressures, novel, non-molecular forms of xenon difluoride can be obtained. Under a pressure of ~50 GPa, XeF
2 transforms into a semiconductor consisting of XeF
4 units linked in a two-dimensional structure, like graphite. At even higher pressures, above 70 GPa, it becomes metallic, forming a three-dimensional structure containing XeF
8 units. However, a recent theoretical study has cast doubt on these experimental results.

The Xe–F bonds are weak. XeF2 has a total bond energy of 267.8 kJ/mol (64.0 kcal/mol), with first and second bond energies of 184.1 kJ/mol (44.0 kcal/mol) and 83.68 kJ/mol (20.00 kcal/mol), respectively. However, XeF2 is much more robust than KrF2, which has a total bond energy of only 92.05 kJ/mol (22.00 kcal/mol).

Chemistry

Synthesis

Synthesis proceeds by the simple reaction:

Xe + F2 → XeF2

The reaction needs heat, irradiation, or an electrical discharge. The product is a solid. It is purified by fractional distillation or selective condensation using a vacuum line.

The first published report of XeF2 was in October 1962 by Chernick, et al. However, though published later, XeF2 was probably first created by Rudolf Hoppe at the University of Münster, Germany, in early 1962, by reacting fluorine and xenon gas mixtures in an electrical discharge. Shortly after these reports, Weeks, Chernick, and Matheson of Argonne National Laboratory reported the synthesis of XeF2 using an all-nickel system with transparent alumina windows, in which equal parts xenon and fluorine gases react at low pressure upon irradiation by an ultraviolet source to give XeF2. Williamson reported that the reaction works equally well at atmospheric pressure in a dry Pyrex glass bulb using sunlight as a source. It was noted that the synthesis worked even on cloudy days.

In the previous syntheses the fluorine gas reactant had been purified to remove hydrogen fluoride. Šmalc and Lutar found that if this step is skipped the reaction rate proceeds at four times the original rate.

In 1965, it was also synthesized by reacting xenon gas with dioxygen difluoride.

Solubility

XeF
2 is soluble in solvents such as BrF
5
, BrF
3
, IF
5
, anhydrous hydrogen fluoride, and acetonitrile, without reduction or oxidation. Solubility in hydrogen fluoride is high, at 167 g per 100 g HF at 29.95 °C.

Derived xenon compounds

Other xenon compounds may be derived from xenon difluoride. The unstable organoxenon compound Xe(CF
3)
2 can be made by irradiating hexafluoroethane to generate CF
3 radicals and passing the gas over XeF
2. The resulting waxy white solid decomposes completely within 4 hours at room temperature.

The XeF cation is formed by combining xenon difluoride with a strong fluoride acceptor, such as an excess of liquid antimony pentafluoride (SbF
5):

XeF
2 + SbF
5 → XeF
+ SbF
6

Adding xenon gas to this pale yellow solution at a pressure of 2–3 atmospheres produces a green solution containing the paramagnetic Xe
2 ion, which contains a Xe−Xe bond: ("apf" denotes solution in liquid SbF
5)

3 Xe(g) + XeF
(apf) + SbF
5(l) ⇌ 2 Xe
2(apf) + SbF
6(apf)

This reaction is reversible; removing xenon gas from the solution causes the Xe
2 ion to revert to xenon gas and XeF
, and the color of the solution returns to a pale yellow.

In the presence of liquid HF, dark green crystals can be precipitated from the green solution at −30 °C:

Xe
2(apf) + 4 SbF
6(apf) → Xe
2Sb
4F
21(s) + 3 F
(apf)

X-ray crystallography indicates that the Xe–Xe bond length in this compound is 309 pm, indicating a very weak bond. The Xe
2 ion is isoelectronic with the I
2 ion, which is also dark green.

Coordination chemistry

Bonding in the XeF2 molecule is adequately described by the three-center four-electron bond model.

XeF2 can act as a ligand in coordination complexes of metals. For example, in HF solution:

Mg(AsF6)2 + 4 XeF2 → (AsF6)2

Crystallographic analysis shows that the magnesium atom is coordinated to 6 fluorine atoms. Four of the fluorine atoms are attributed to the four xenon difluoride ligands while the other two are a pair of cis-AsF
6 ligands.

A similar reaction is:

Mg(AsF6)2 + 2 XeF2 → (AsF6)2

In the crystal structure of this product the magnesium atom is octahedrally-coordinated and the XeF2 ligands are axial while the AsF
6 ligands are equatorial.

Many such reactions with products of the form (AF6)x have been observed, where M can be calcium, strontium, barium, lead, silver, lanthanum, or neodymium and A can be arsenic, antimony or phosphorus. Some of these compounds feature extraordinarily high coordination numbers at the metal center.

In 2004, results of synthesis of a solvate where part of cationic centers were coordinated solely by XeF2 fluorine atoms were published. Reaction can be written as:

2 Ca(AsF6)2 + 9 XeF2 → Ca2(XeF2)9(AsF6)4.

This reaction requires a large excess of xenon difluoride. The structure of the salt is such that half of the Ca ions are coordinated by fluorine atoms from xenon difluoride, while the other Ca ions are coordinated by both XeF2 and AsF
6.

Applications

As a fluorinating agent

Xenon difluoride is a strong fluorinating and oxidizing agent. With fluoride ion acceptors, it forms XeF
and Xe
2F
3 species which are even more powerful fluorinators.

Among the fluorination reactions that xenon difluoride undergoes are:

  • Oxidative fluorination:
Ph3TeF + XeF2 → Ph3TeF3 + Xe
  • Reductive fluorination:
2 CrO2F2 + XeF2 → 2 CrOF3 + Xe +O2
  • Aromatic fluorination:
  • Alkene fluorination:
  • Radical fluorination in radical decarboxylative fluorination reactions, in Hunsdiecker-type reactions where xenon difluoride is used to generate the radical intermediate as well as the fluorine transfer source, and in generating aryl radicals from aryl silanes:

XeF
2 is selective about which atom it fluorinates, making it a useful reagent for fluorinating heteroatoms without touching other substituents in organic compounds. For example, it fluorinates the arsenic atom in trimethylarsine, but leaves the methyl groups untouched:

(CH
3)
3As + XeF
2 → (CH
3)
3AsF
2 + Xe

XeF2 can similarly be used to prepare N-fluoroammonium salts, useful as fluorine transfer reagents in organic synthesis (e.g., Selectfluor), from the corresponding tertiary amine:

+ XeF2 + NaBF42 + NaF + Xe

XeF
2 will also oxidatively decarboxylate carboxylic acids to the corresponding fluoroalkanes:

RCOOH + XeF2 → RF + CO2 + Xe + HF

Silicon tetrafluoride has been found to act as a catalyst in fluorination by XeF
2.

As an etchant

Xenon difluoride is also used as an isotropic gaseous etchant for silicon, particularly in the production of microelectromechanical systems (MEMS), as first demonstrated in 1995. Commercial systems use pulse etching with an expansion chamber Brazzle, Dokmeci, et al. describe this process:

The mechanism of the etch is as follows. First, the XeF2 adsorbs and dissociates to xenon and fluorine atoms on the surface of silicon. Fluorine is the main etchant in the silicon etching process. The reaction describing the silicon with XeF2 is

2 XeF2 + Si → 2 Xe + SiF4

XeF2 has a relatively high etch rate and does not require ion bombardment or external energy sources in order to etch silicon.

References

  1. ^ Melita Tramšek; Boris Žemva (2006). "Synthesis, Properties and Chemistry of Xenon(II) Fluoride" (PDF). Acta Chim. Slov. 53 (2): 105–116. doi:10.1002/chin.200721209.
  2. Hindermann, D. K., Falconer, W. E. (1969). "Magnetic Shielding of 19F in XeF2". J. Chem. Phys. 50 (3): 1203. Bibcode:1969JChPh..50.1203H. doi:10.1063/1.1671178.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A23. ISBN 978-0-618-94690-7.
  4. "Sigma Aldrich Xenon Difluoride SDS". Sigma Aldrich. Millipore Sigma. Retrieved 2 November 2022.
  5. "MSDS: xenon difluoride" (PDF). BOC Gases. Retrieved 2010-06-01.
  6. James L. Weeks; Max S. Matheson (1966). "Xenon Difluoride". Inorganic Syntheses. Vol. 8. pp. 260–264. doi:10.1002/9780470132395.ch69. ISBN 9780470132395. {{cite book}}: |journal= ignored (help)
  7. Kim, M.; Debessai, M.; Yoo, C. S. (2010). "Two- and three-dimensional extended solids and metallization of compressed XeF2". Nature Chemistry. 2 (9): 784–788. Bibcode:2010NatCh...2..784K. doi:10.1038/nchem.724. PMID 20729901.
  8. Kurzydłowski, D.; Zaleski-Ejgierd, P.; Grochala, W.; Hoffmann, R. (2011). "Freezing in Resonance Structures for Better Packing: XeF2Becomes (XeF+)(F−) at Large Compression". Inorganic Chemistry. 50 (8): 3832–3840. doi:10.1021/ic200371a. PMID 21438503.
  9. Cockett, A. H.; Smith, K. C.; Bartlett, Neil (2013). The Chemistry of the Monatomic Gases. Pergamon Texts in Inorganic Chemistry. St. Louis, MO: Elsevier Science. ISBN 9781483157368. OCLC 953379200.
  10. ^ Tius, M. A. (1995). "Xenon difluoride in synthesis". Tetrahedron. 51 (24): 6605–6634. doi:10.1016/0040-4020(95)00362-C.
  11. Chernick, CL and Claassen, HH and Fields, PR and Hyman, HH and Malm, JG and Manning, WM and Matheson, MS and Quarterman, LA and Schreiner, F. and Selig, HH; et al. (1962). "Fluorine Compounds of Xenon and Radon". Science. 138 (3537): 136–138. Bibcode:1962Sci...138..136C. doi:10.1126/science.138.3537.136. PMID 17818399. S2CID 10330125.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Hoppe, R.; Daehne, W.; Mattauch, H.; Roedder, K. (1962). "Fluorination of Xenon". Angew. Chem. Int. Ed. Engl. 1 (11): 599. doi:10.1002/anie.196205992.
  13. Hoppe, R. (1964). "Die Valenzverbindungen der Edelgase". Angewandte Chemie. 76 (11): 455. Bibcode:1964AngCh..76..455H. doi:10.1002/ange.19640761103. First review on the subject by the pioneer of covalent noble gas compounds.
  14. Weeks, J.; Matheson, M.; Chernick, C. (1962). "Photochemical Preparation of Xenon Difluoride" Photochemical Preparation of Xenon Difluoride". J. Am. Chem. Soc. 84 (23): 4612–4613. doi:10.1021/ja00882a063.
  15. Williamson, Stanley M.; Sladky, Friedrich O.; Bartlett, Neil (1968). "Xenon Difluoride". Inorganic Syntheses. Vol. 11. pp. 147–151. doi:10.1002/9780470132425.ch31. ISBN 9780470132425. {{cite book}}: |journal= ignored (help)
  16. Šmalc, Andrej; Lutar, Karel; Kinkead, Scott A. (2007). "Xenon Difluoride (Modification)". Inorganic Syntheses. Vol. 29. pp. 1–4. doi:10.1002/9780470132609.ch1. ISBN 9780470132609. {{cite book}}: |journal= ignored (help)
  17. Morrow, S. I.; Young, A. R. (1965). "The Reaction of Xenon with Dioxygen Difluoride. A New Method for the Synthesis of Xenon Difluoride". Inorganic Chemistry. 4 (5): 759–760. doi:10.1021/ic50027a038.
  18. ^ Harding, Charlie; Johnson, David Arthur; Janes, Rob (2002). Elements of the p block. Royal Society of Chemistry, Open University. ISBN 978-0-85404-690-4.
  19. Brown, D. R.; Clegg, M. J.; Downs, A. J.; Fowler, R. C.; Minihan, A. R.; Norris, J. R.; Stein, L. . (1992). "The dixenon(1+) cation: formation in the condensed phases and characterization by ESR, UV-visible, and Raman spectroscopy". Inorganic Chemistry. 31 (24): 5041–5052. doi:10.1021/ic00050a023.
  20. Stein, L.; Henderson, W. W. (1980). "Production of dixenon cation by reversible oxidation of xenon". Journal of the American Chemical Society. 102 (8): 2856–2857. Bibcode:1980JAChS.102.2856S. doi:10.1021/ja00528a065.
  21. Mackay, Kenneth Malcolm; Mackay, Rosemary Ann; Henderson, W. (2002). Introduction to modern inorganic chemistry (6th ed.). CRC Press. ISBN 978-0-7487-6420-4.
  22. Egon Wiberg; Nils Wiberg; Arnold Frederick Holleman (2001). Inorganic chemistry. Academic Press. p. 422. ISBN 978-0-12-352651-9.
  23. Tramšek, M.; Benkič, P.; Žemva, B. (2004). "First Compounds of Magnesium with XeF2". Inorg. Chem. 43 (2): 699–703. doi:10.1021/ic034826o. PMID 14731032.
  24. Grochala, Wojciech (Oct 2007) . "Atypical compounds of gases, which have been called 'noble'". Chemical Society Reviews. 36 (10). Royal Society of Chemistry: 1640. doi:10.1039/b702109g. PMID 17721587 – via CiteSeerX.
  25. Tramšek, M.; Benkič, P.; Žemva, B. (2004). "The First Compound Containing a Metal Center in a Homoleptic Environment of XeF2 Molecules". Angewandte Chemie International Edition. 43 (26): 3456–8. doi:10.1002/anie.200453802. PMID 15221838.
  26. Halpem, D. F. (2004). "Xenon(II) Fluoride". In Paquette, L. (ed.). Encyclopedia of Reagents for Organic Synthesis. New York, NY: J. Wiley & Sons.
  27. Taylor, S.; Kotoris, C.; Hum, G. (1999). "Recent Advances in Electrophilic Fluorination". Tetrahedron. 55 (43): 12431–12477. doi:10.1016/S0040-4020(99)00748-6.
  28. Patrick, T. B.; Darling, D. L. (1986). "Fluorination of activated aromatic systems with cesium fluoroxysulfate". J. Org. Chem. 51 (16): 3242–3244. doi:10.1021/jo00366a044.
  29. Lothian, A. P.; Ramsden, C. A. (1993). "Rapid fluorodesilylation of aryltrimethylsilanes using xenon difuoride: An efficient new route to aromatic fluorides". Synlett. 1993 (10): 753–755. doi:10.1055/s-1993-22596. S2CID 196734038.
  30. W. Henderson (2000). Main group chemistry. Great Britain: Royal Society of Chemistry. p. 150. ISBN 978-0-85404-617-1.
  31. Shunatona, Hunter P.; Früh, Natalja; Wang, Yi-Ming; Rauniyar, Vivek; Toste, F. Dean (2013-07-22). "Enantioselective Fluoroamination: 1,4-Addition to Conjugated Dienes Using Anionic Phase-Transfer Catalysis". Angewandte Chemie International Edition. 52 (30): 7724–7727. doi:10.1002/anie.201302002. ISSN 1521-3773. PMID 23766145.
  32. Patrick, Timothy B.; Johri, Kamalesh K.; White, David H.; Bertrand, William S.; Mokhtar, Rodziah; Kilbourn, Michael R.; Welch, Michael J. (1986). "Replacement of the carboxylic acid function with fluorine". Can. J. Chem. 64: 138–141. doi:10.1139/v86-024.
  33. Grakauskas, Vytautas (1969). "Aqueous fluorination of carboxylic acid salts". J. Org. Chem. 34 (8): 2446–2450. doi:10.1021/jo01260a040.
  34. Tamura Masanori; Takagi Toshiyuki; Shibakami Motonari; Quan Heng-Dao; Sekiya Akira (1998). "Fluorination of olefins with xenon difluoride-silicon tetrafluoride". Fusso Kagaku Toronkai Koen Yoshishu (in Japanese). 22: 62–63. Journal code: F0135B; accession code: 99A0711841.
  35. Chang, F.; Yeh, R.; G., Lin; Chu, P.; Hoffman, E.; Kruglick, E.; Pister, K.; Hecht, M. (1995). "Gas-phase silicon micromachining with xenon difluoride". In Bailey, Wayne; Motamedi, M. Edward; Luo, Fang-Chen (eds.). Microelectronic Structures and Microelectromechanical Devices for Optical Processing and Multimedia Applications. Vol. 2641. pp. 117–128. Bibcode:1995SPIE.2641..117C. doi:10.1117/12.220933. S2CID 39522253. {{cite book}}: |journal= ignored (help)
  36. Chu, P.; Chen, J.; Chu, P.; Lin, G.; Huang, J.; Warneke, B; Pister, K. (1997). Controlled Pulse-Etching with Xenon Difluoride. Int. Conf. Solid State Sensors and Actuators (Transducers 97). pp. 665–668.
  37. Brazzle, J. D.; Dokmeci, M. R.; Mastrangelo, C. H. (2004). "Modeling and characterization of sacrificial polysilicon etching using vapor-phase xenon difluoride". 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest. 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). pp. 737–740. doi:10.1109/MEMS.2004.1290690. ISBN 0-7803-8265-X.

Further reading

External links

Xenon compounds
Xenon(0)
Xenon(I)
Xenon(II)
Organoxenon(II) compounds
  • XeC6F5F
  • XeC6F5C2F3
  • XeC6F5CF3
  • Xe(C6F5)2
  • XeC6F5C6H2F3
  • XeC6F5CN
  • Xe(CF3)2
  • Xenon(IV)
    Organoxenon(IV) compounds
  • XeF2C6F5BF4
  • Xenon(VI)
    Xenon(VIII)
    Category:Xenon compounds
    Noble gas compounds
    Helium compounds
    Neon compounds
    Argon compounds
    Krypton compounds
    Xenon compounds
    Xe(0)
    Xe(I)
    Xe(II)
    Xe(IV)
    Xe(VI)
    Xe(VIII)
    Radon compounds
    Rn(II)
    Rn(IV)
    Rn(VI)
    Oganesson compounds
    (predicted)
    Og(0)
    • Og2
    • OgH
    Og(II)
    • OgF2
    • OgCl2
    • OgO
    Og(IV)
    • OgF4
    • OgO2
    • OgTs4
    Og(VI)
    • OgF6
    Hypothetical compound
    Fluorine compounds
    Salts and covalent derivatives of the fluoride ion
    HF ?HeF2
    LiF BeF2 BF
    BF3
    B2F4
    +BO3
    CF4
    CxFy
    +CO3
    NF3
    FN3
    N2F2
    NF
    N2F4
    NF2
    ?NF5
    OF2
    O2F2
    OF
    O3F2
    O4F2
    ?OF4
    F2 Ne
    NaF MgF2 AlF
    AlF3
    SiF4 P2F4
    PF3
    PF5
    S2F2
    SF2
    S2F4
    SF3
    SF4
    S2F10
    SF6
    +SO4
    ClF
    ClF3
    ClF5
    ?ArF2
    ?ArF4
    KF CaF
    CaF2
    ScF3 TiF2
    TiF3
    TiF4
    VF2
    VF3
    VF4
    VF5
    CrF2
    CrF3
    CrF4
    CrF5
    ?CrF6
    MnF2
    MnF3
    MnF4
    ?MnF5
    FeF2
    FeF3
    FeF4
    CoF2
    CoF3
    CoF4
    NiF2
    NiF3
    NiF4
    CuF
    CuF2
    ?CuF3
    ZnF2 GaF2
    GaF3
    GeF2
    GeF4
    AsF3
    AsF5
    Se2F2
    SeF4
    SeF6
    +SeO3
    BrF
    BrF3
    BrF5
    KrF2
    ?KrF4
    ?KrF6
    RbF SrF
    SrF2
    YF3 ZrF2
    ZrF3
    ZrF4
    NbF4
    NbF5
    MoF4
    MoF5
    MoF6
    TcF4
    TcF
    5

    TcF6
    RuF3
    RuF
    4

    RuF5
    RuF6
    RhF3
    RhF4
    RhF5
    RhF6
    PdF2
    Pd
    PdF4
    ?PdF6
    Ag2F
    AgF
    AgF2
    AgF3
    CdF2 InF
    InF3
    SnF2
    SnF4
    SbF3
    SbF5
    TeF4
    ?Te2F10
    TeF6
    +TeO3
    IF
    IF3
    IF5
    IF7
    +IO3
    XeF2
    XeF4
    XeF6
    ?XeF8
    CsF BaF2   LuF3 HfF4 TaF5 WF4
    WF5
    WF6
    ReF4
    ReF5
    ReF6
    ReF7
    OsF4
    OsF5
    OsF6
    ?OsF
    7

    ?OsF
    8
    IrF2
    IrF3
    IrF4
    IrF5
    IrF6
    PtF2
    Pt
    PtF4
    PtF5
    PtF6
    AuF
    AuF3
    Au2F10
    ?AuF6
    AuF5•F2
    Hg2F2
    HgF2
    ?HgF4
    TlF
    TlF3
    PbF2
    PbF4
    BiF3
    BiF5
    ?PoF2
    PoF4
    PoF6
    AtF
    ?AtF3
    ?AtF5
    RnF2
    ?RnF
    4

    ?RnF
    6
    FrF RaF2   LrF3 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
    LaF3 CeF3
    CeF4
    PrF3
    PrF4
    NdF2
    NdF3
    NdF4
    PmF3 SmF
    SmF2
    SmF3
    EuF2
    EuF3
    GdF3 TbF3
    TbF4
    DyF2
    DyF3
    DyF4
    HoF3 ErF3 TmF2
    TmF3
    YbF2
    YbF3
    AcF3 ThF3
    ThF4
    PaF4
    PaF5
    UF3
    UF4
    UF5
    UF6
    NpF3
    NpF4
    NpF5
    NpF6
    PuF3
    PuF4
    PuF5
    PuF6
    AmF2
    AmF3
    AmF4
    ?AmF6
    CmF3
    CmF4
     ?CmF6
    BkF3
    BkF
    4
    CfF3
    CfF4
    EsF3
    EsF4
    ?EsF6
    Fm Md No
    PF−6, AsF−6, SbF−6 compounds
    AlF2−5, AlF3−6 compounds
    chlorides, bromides, iodides
    and pseudohalogenides
    SiF2−6, GeF2−6 compounds
    Oxyfluorides
    Organofluorides
    with transition metal,
    lanthanide, actinide, ammonium
    nitric acids
    bifluorides
    thionyl, phosphoryl,
    and iodosyl
    Chemical formulas
    Categories: