Misplaced Pages

Strobogrammatic number

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Strobogrammatic)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Strobogrammatic number" – news · newspapers · books · scholar · JSTOR (September 2012) (Learn how and when to remove this message)
Numeral ambigram
The number 619 is strobogrammatic.

A strobogrammatic number is a number whose numeral is rotationally symmetric, so that it appears the same when rotated 180 degrees. In other words, the numeral looks the same right-side up and upside down (e.g., 69, 96, 1001). A strobogrammatic prime is a strobogrammatic number that is also a prime number, i.e., a number that is only divisible by one and itself (e.g., 11). It is a type of ambigram, words and numbers that retain their meaning when viewed from a different perspective, such as palindromes.

Description

When written using standard characters (ASCII), the numbers, 0, 1, 8 are symmetrical around the horizontal axis, and 6 and 9 are the same as each other when rotated 180 degrees. In such a system, the first few strobogrammatic numbers are:

0, 1, 8, 11, 69, 88, 96, 101, 111, 181, 609, 619, 689, 808, 818, 888, 906, 916, 986, 1001, 1111, 1691, 1881, 1961, 6009, 6119, 6699, 6889, 6969, 8008, 8118, 8698, 8888, 8968, 9006, 9116, 9696, 9886, 9966, ... (sequence A000787 in the OEIS)

The first few strobogrammatic primes are:

11, 101, 181, 619, 16091, 18181, 19861, 61819, 116911, 119611, 160091, 169691, 191161, 196961, 686989, 688889, ... (sequence A007597 in the OEIS)

The years 1881 and 1961 were the most recent strobogrammatic years; the next strobogrammatic year will be 6009.

Although amateur aficionados of mathematics are quite interested in this concept, professional mathematicians generally are not. Like the concept of repunits and palindromic numbers, the concept of strobogrammatic numbers is base-dependent (expanding to base-sixteen, for example, produces the additional symmetries of 3/E; some variants of duodecimal systems also have this and a symmetrical x). Unlike palindromes, it is also font dependent. The concept of strobogrammatic numbers is not neatly expressible algebraically, the way that the concept of repunits is, or even the concept of palindromic numbers.

Nonstandard systems

The strobogrammatic properties of a given number vary by typeface. For instance, in an ornate serif type, the numbers 2 and 7 may be rotations of each other; however, in a seven-segment display emulator, this correspondence is lost, but 2 and 5 are both symmetrical. There are sets of glyphs for writing numbers in base 10, such as the Devanagari and Gurmukhi of India in which the numbers listed above are not strobogrammatic at all.

In binary, given a glyph for 1 consisting of a single line without hooks or serifs and a sufficiently symmetric glyph for 0, the strobogrammatic numbers are the same as the palindromic numbers and also the same as the dihedral numbers. In particular, all Mersenne numbers are strobogrammatic in binary. Dihedral primes that do not use 2 or 5 are also strobogrammatic primes in binary.

The natural numbers 0 and 1 are strobogrammatic in every base, with a sufficiently symmetric font, and they are the only natural numbers with this feature, since every natural number larger than one is represented by 10 in its own base.

In duodecimal, the strobogrammatic numbers are (using inverted two and three for ten and eleven, respectively)

0, 1, 8, 11, 2↊, 3↋, 69, 88, 96, ↊2, ↋3, 101, 111, 181, 20↊, 21↊, 28↊, 30↋, 31↋, 38↋, 609, 619, 689, 808, 818, 888, 906, 916, 986, ↊02, ↊12, ↊82, ↋03, ↋13, ↋83, ...

Examples of strobogrammatic primes in duodecimal are:

11, 3↋, 111, 181, 30↋, 12↊1, 13↋1, 311↋, 396↋, 3↊2↋, 11111, 11811, 130↋1, 16191, 18881, 1↋831, 3000↋, 3181↋, 328↊↋, 331↋↋, 338↋↋, 3689↋, 3818↋, 3888↋, ...

Upside down year

The most recent upside down year was 1961, or 2002 if the number 2 is included (in the case of seven-segment displays), and before that were sequentially 1881 and 1691, unless leading zeroes are allowed to be arbitrarily added. In this case, 02020 would be the most recent upside down year. Before that were 1111 and 1001, and before that were 3-digit years, such as 986, 888, 689, 181, 101, etc.

Using only the digits 0, 1, 6, 8 and 9, the next upside-down year will not occur until 6009. Allowing for the numbers 2, 5 and 7, the next such year will be 2112.

Mad magazine parodied the upside down year in March 1961.

References

  1. "Strobogrammatic number". Encyclopædia Britannica. Archived from the original on 21 September 2021. Retrieved 19 September 2021.
  2. Schaaf, William L. (1 March 2016) . "Number game". Encyclopedia Britannica. Archived from the original on 2 February 2017. Retrieved 22 January 2017.
  3. Caldwell, Chris K. "The Prime Glossary: strobogrammatic". primes.utm.edu. Archived from the original on 8 January 2017. Retrieved 22 January 2017.
  4. Sloane, N. J. A. (ed.). "Sequence A000787 (Strobogrammatic numbers: the same upside down)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 22 January 2017.
  5. "Mad Magazine archival 'cover site'". Archived from the original on 15 November 2020. Retrieved 12 September 2022.
  6. "Mad Magazine, #61, March 1961. Upside Down Year. ASIN: B00ZJHXR4U". Archived from the original on 19 February 2020. Retrieved 12 September 2022.
  7. "MAD MAGAZINE MARCH 1961 #61 UPSIDE-DOWN YEAR SPY VS SPY. WorthPoint". Archived from the original on 5 February 2020. Retrieved 12 September 2022.
Prime number classes
By formula
By integer sequence
By property
Base-dependent
Patterns
k-tuples
By size
  • Mega (1,000,000+ digits)
  • Largest known
  • Complex numbers
    Composite numbers
    Related topics
    First 60 primes
    List of prime numbers
    Classes of natural numbers
    Powers and related numbers
    Of the form a × 2 ± 1
    Other polynomial numbers
    Recursively defined numbers
    Possessing a specific set of other numbers
    Expressible via specific sums
    Figurate numbers
    2-dimensional
    centered
    non-centered
    3-dimensional
    centered
    non-centered
    pyramidal
    4-dimensional
    non-centered
    Combinatorial numbers
    Primes
    Pseudoprimes
    Arithmetic functions and dynamics
    Divisor functions
    Prime omega functions
    Euler's totient function
    Aliquot sequences
    Primorial
    Other prime factor or divisor related numbers
    Numeral system-dependent numbers
    Arithmetic functions
    and dynamics
    Digit sum
    Digit product
    Coding-related
    Other
    P-adic numbers-related
    Digit-composition related
    Digit-permutation related
    Divisor-related
    Other
    Binary numbers
    Generated via a sieve
    Sorting related
    Natural language related
    Graphemics related

    Categories: