Misplaced Pages

Gold: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 08:51, 8 June 2005 view source216.111.117.50 (talk)No edit summary← Previous edit Latest revision as of 06:23, 6 December 2024 view source Burrobert (talk | contribs)Extended confirmed users11,289 edits Relates to 2023. Wrong order. 
Line 1: Line 1:
{{about|the element}}
{{otheruses}}
{{redirect|Element 79|the anthology|Element 79 (anthology){{!}}''Element 79'' (anthology)}}
<!-- Here is a table of data; skip past it to edit the text. -->
{{pp-vandalism|small=yes}}
{| border="1" cellpadding="2" cellspacing="0" align="right" style="margin-left: 0.5em;"
{{pp-move}}
| colspan="2" cellspacing="0" cellpadding="2" |
{{Use dmy dates|date=March 2024}}
{| align="center" border="0"
{{infobox gold}}
| colspan="2" align="center" | ] &ndash; '''gold''' &ndash; ]

'''Gold''' is a ] with the ] '''Au''' (from ] {{lang|la|aurum}}) and ] 79. In its pure form, it is a ], slightly orange-yellow, dense, soft, ], and ] ]. Chemically, gold is a ], a ], and one of the ]. It is one of the least ] chemical elements, being the second-lowest in the ]. It is solid under ].

Gold often occurs in ]al (]), as ] or grains, in ], ], and ]s. It occurs in a ] series with the native element ] (as in ]), naturally ]ed with other metals like ] and ], and ]s such as within ]. Less commonly, it occurs in minerals as gold compounds, often with ] (]s).

Gold is resistant to most acids, though it does dissolve in ] (a mixture of ] and ]), forming a soluble ] ]. Gold is insoluble in nitric acid alone, which dissolves silver and ]s, a property long used to ] gold and confirm the presence of gold in metallic substances, giving rise to the term ']'. Gold dissolves in ] solutions of ], which are used in ] and ]. Gold also dissolves in ], forming ] alloys, and as the gold acts simply as a solute, this is not a ].

A relatively rare element,<ref>{{cite book |last=Duckenfield |first=Mark |publisher=Routledge |date=2016 |title=The Monetary History of Gold: A Documentary History, 1660–1999 |url=https://books.google.com/books?id=VeJmDAAAQBAJ&pg=PA4 |page=4 |quote=Its scarcity makes it a useful store of value; however, its relative rarity reduced its utility as a currency, especially for transactions in small denominations. |isbn=9781315476124}}</ref><ref>{{cite book |last=Pearce |first=Susan M. |publisher=Smithsonian Books |date=1993 |title=Museums, Objects, and Collections: A Cultural Study |url=https://books.google.com/books?id=M6aZBwAAQBAJ&pg=PT53 |page=53 |quote=Its scarcity makes it a useful store of value; however, its relative rarity reduced its utility as a currency, especially for transactions in small denominations. ... Rarity is, nevertheless, in itself a source of value, and so is the degree of difficulty which surrounds the winning of the raw material, especially if it is exotic and has to be brought some distance. Gold is, geologically, a relatively rare material on Earth and occurs only in specific places which are remote from most other places. |isbn=9781588345172}}</ref> gold is a ] that has been used for ], ], and other ] throughout ]. In the past, a ] was often implemented as a ]. Gold coins ceased to be minted as a circulating currency in the 1930s, and the world gold standard was abandoned for a ] system after the ] measures of 1971.

In 2023, the ] was China, followed by Russia and Australia.<ref name="Gold Production-2023">{{cite web |title=Gold Production & Mining Data by Country |date=7 June 2023 |url=https://www.gold.org/goldhub/data/gold-production-by-country}}</ref> {{as of|2020}}, a total of around 201,296 ]s of gold exist above ground.<ref>{{cite web |title=Above-ground stocks |url=https://www.gold.org/goldhub/data/above-ground-stocks |publisher=gold.org |access-date=18 October 2021}}</ref> This is equal to a cube, with each side measuring roughly {{convert|21.7|m|ft|sp=us}}. The world's consumption of new gold produced is about 50% in jewelry, 40% in ]s, and 10% in ].<ref name="Soos-2011">{{cite news |last=Soos |first=Andy |title=Gold Mining Boom Increasing Mercury Pollution Risk |date=6 January 2011 |publisher=Oilprice.com |url=http://oilprice.com/Metals/Gold/Gold-Mining-Boom-Increasing-Mercury-Pollution-Risk.html |work=Advanced Media Solutions, Inc. |access-date=26 March 2011}}</ref> Gold's high malleability, ductility, resistance to corrosion and most other chemical reactions, as well as conductivity of electricity have led to its continued use in corrosion-resistant ]s in all types of computerized devices (its chief industrial use). Gold is also used in ] shielding, the production of ], ]ing, and ]. Certain ] are still used as ] agents in medicine.

== Characteristics ==
]
] of about {{convert|0.5|m2|abbr=on}} in area.]]
Gold is the most ] of all metals. It can be drawn into a wire of single-atom width, and then stretched considerably before it breaks.<ref name="Kizuka-2008">{{cite journal |last=Kizuka |first=Tokushi |title=Atomic configuration and mechanical and electrical properties of stable gold wires of single-atom width |url=https://tsukuba.repo.nii.ac.jp/record/16027/files/PRB-77_15.pdf |archive-url=https://web.archive.org/web/20210716175414/https://tsukuba.repo.nii.ac.jp/record/16027/files/PRB-77_15.pdf |archive-date=16 July 2021 |url-status=live |journal=Physical Review B |volume=77 |issue=15 |pages=155401 |date=1 April 2008 |bibcode=2008PhRvB..77o5401K|issn=1098-0121 |doi=10.1103/PhysRevB.77.155401 |hdl-access=free |hdl=2241/99261}}</ref> Such nanowires distort via the formation, reorientation, and migration of ]s and ] without noticeable hardening.<ref>{{cite journal |last1=Che Lah |first1=Nurul Akmal |last2=Trigueros |first2=Sonia |title=Synthesis and modelling of the mechanical properties of Ag, Au and Cu nanowires |journal=] |volume=20 |issue=1 |pages=225–261 |year=2019 |bibcode=2019STAdM..20..225L |pmid=30956731 |pmc=6442207 |doi=10.1080/14686996.2019.1585145|issn = 1468-6996 }}</ref> A single gram of gold can be beaten into a sheet of {{convert|1|m2}}, and an ] into {{convert|300|sqft|disp=flip}}. Gold leaf can be beaten thin enough to become semi-transparent. The transmitted light appears greenish-blue because gold strongly reflects yellow and red.<ref>{{cite web |url=http://www.webexhibits.org/causesofcolor/9.html |title=Gold: causes of color |access-date=6 June 2009}}</ref> Such semi-transparent sheets also strongly reflect ] light, making them useful as infrared (radiant heat) shields in the visors of heat-resistant suits and in sun visors for ]s.<ref>{{cite book |title=Suiting up for space: the evolution of the space suit |last=Mallan |first=Lloyd |date=1971 |publisher=John Day Co. |isbn=978-0-381-98150-1 |page=216}}</ref> Gold is a good ] and ].

Gold has a density of 19.3&nbsp;g/cm<sup>3</sup>, almost identical to that of ] at 19.25&nbsp;g/cm<sup>3</sup>; as such, tungsten has been used in the ] of ]s, such as by plating a tungsten bar with gold.<ref name="Gray-2008">{{cite magazine |last=Gray |first=Theo |title=How to Make Convincing Fake-Gold Bars |url=http://www.popsci.com/diy/article/2008-03/how-make-convincing-fake-gold-bars |magazine=] |date=14 March 2008 |access-date=18 June 2008}}</ref><ref>Willie, Jim (18 November 2009) " {{webarchive |url=https://web.archive.org/web/20111008050729/http://www.kitco.com/ind/willie/nov182009.html |date=8 October 2011}}". Kitco</ref><ref>{{cite web |url=http://news.coinupdate.com/largest-private-refinery-discovers-gold-plated-tungsten-bar-0171/ |title=Largest Private Refinery Discovers Gold-Plated Tungsten Bar &#124; Coin Update |website=news.coinupdate.com}}</ref><ref>{{cite news |title=Austrians Seize False Gold Tied to London Bullion Theft |work=] |access-date=25 March 2012 |date=22 December 1983 |url=https://www.nytimes.com/1983/12/22/world/austrians-seize-false-gold-tied-to-london-bullion-theft.html}}</ref> By comparison, the density of ] is 11.34&nbsp;g/cm<sup>3</sup>, and that of the densest element, ], is {{val|22.588|0.015|u=g/cm<sup>3</sup>}}.<ref name="Arblaster-1995">{{cite journal |last=Arblaster |first=J. W. |title=Osmium, the Densest Metal Known |journal=Platinum Metals Review |volume=39 |issue=4 |date=1995 |page=164 |doi=10.1595/003214095X394164164 |s2cid=267393021 |url=http://www.technology.matthey.com/pdf/pmr-v39-i4-164-164.pdf |access-date=14 October 2016 |archive-date=18 October 2016 |archive-url=https://web.archive.org/web/20161018195547/http://www.technology.matthey.com/pdf/pmr-v39-i4-164-164.pdf |url-status=dead }}</ref><!-- 10.1038/nchem.1479 from 2012 gives same value-->

=== Color ===
{{Main|Colored gold}}
]
]–Au–] alloys]]
Whereas most metals are gray or silvery white, gold is slightly reddish-yellow.<ref name="Lippincott-1880">{{cite book |title=Encyclopædia of Chemistry, Theoretical, Practical, and Analytical, as Applied to the Arts and Manufacturers: Glass-zinc |url=https://books.google.com/books?id=o-FYAAAAYAAJ&pg=PA70 |year=1880 |publisher=J.B. Lippincott & Company |pages=70–}}</ref> This color is determined by the frequency of ]s among the metal's valence electrons, in the ultraviolet range for most metals but in the visible range for gold due to ] affecting the ] around gold atoms.<ref>{{cite web |url=http://math.ucr.edu/home/baez/physics/Relativity/SR/gold_color.html |title=Relativity in Chemistry |publisher=Math.ucr.edu |access-date=5 April 2009}}</ref><ref>{{Cite journal |first1=Hubert |last1=Schmidbaur |first2=Stephanie |last2=Cronje |first3=Bratislav |last3=Djordjevic |first4=Oliver |last4=Schuster |journal=Chemical Physics |volume=311 |pages=151–161 |title=Understanding gold chemistry through relativity |doi=10.1016/j.chemphys.2004.09.023 |date=2005 |issue=1–2 |bibcode=2005CP....311..151S}}</ref> Similar effects impart a golden hue to metallic ].

Common colored gold alloys include the distinctive eighteen-karat ] created by the addition of copper. Alloys containing ] or ] are also important in commercial jewelry as these produce white gold alloys. Fourteen-karat gold-copper alloy is nearly identical in color to certain ] alloys, and both may be used to produce police and other ]s. Fourteen- and eighteen-karat gold alloys with silver alone appear greenish-yellow and are referred to as ]. Blue gold can be made by alloying with ], and purple gold can be made by alloying with ]. Less commonly, addition of ], ], and other elements can produce more unusual colors of gold for various applications.<ref name="WorldGoldCouncil" />

], used by electron-microscopists, is red if the particles are small; larger particles of colloidal gold are blue.<ref>{{Cite book |url=https://books.google.com/books?id=MzT9eWxtmRgC&pg=PA180 |title=Electron Microscopy in Microbiology |date=1988 |publisher=Academic Press |isbn=978-0-08-086049-7}}</ref>

=== Isotopes ===
{{Main|Isotopes of gold}}
Gold has only one stable ], {{chem|197|Au}}, which is also its only naturally occurring isotope, so gold is both a ] and ]. Thirty-six ] have been synthesized, ranging in ] from 169 to 205. The most stable of these is {{chem|195|Au}} with a ] of 186.1 days. The least stable is {{chem|171|Au}}, which decays by ] with a half-life of 30 μs. Most of gold's radioisotopes with atomic masses below 197 decay by some combination of ], ], and ]. The exceptions are {{chem|195|Au}}, which decays by electron capture, and {{chem|196|Au}}, which decays most often by electron capture (93%) with a minor ] path (7%).<ref>{{cite web |url=http://www.nndc.bnl.gov/nudat2/ |website=National Nuclear Data Center |title=Nudat 2 |access-date=12 April 2012}}</ref> All of gold's radioisotopes with atomic masses above 197 decay by β<sup>−</sup> decay.<ref name="Audi-2003">{{NUBASE 2003}}</ref>

At least 32 ]s have also been characterized, ranging in atomic mass from 170 to 200. Within that range, only {{chem|178|Au}}, {{chem|180|Au}}, {{chem|181|Au}}, {{chem|182|Au}}, and {{chem|188|Au}} do not have isomers. Gold's most stable isomer is {{chem|198m2|Au}} with a half-life of 2.27 days. Gold's least stable isomer is {{chem|177m2|Au}} with a half-life of only 7&nbsp;ns. {{chem|184m1|Au}} has three decay paths: β<sup>+</sup> decay, ], and alpha decay. No other isomer or isotope of gold has three decay paths.<ref name="Audi-2003" />

==== Synthesis ====
{{see also|Synthesis of precious metals}}
The possible production of gold from a more common element, such as ], has long been a subject of human inquiry, and the ancient and medieval discipline of ] often focused on it; however, the transmutation of the chemical elements did not become possible until the understanding of ] in the 20th century. The first synthesis of gold was conducted by Japanese physicist ], who synthesized gold from ] in 1924 by neutron bombardment.<ref>{{Cite journal |last1=Miethe |first1=A. |title=Der Zerfall des Quecksilberatoms |doi=10.1007/BF01505547 |journal=Die Naturwissenschaften |volume=12 |issue=29 |pages=597–598 |year=1924 |bibcode=1924NW.....12..597M|s2cid=35613814 }}</ref> An American team, working without knowledge of Nagaoka's prior study, conducted the same experiment in 1941, achieving the same result and showing that the ] produced by it were all ].<ref>{{cite journal |last1=Sherr |first1=R. |first2=K. T. |last2=Bainbridge |first3=H. H. |last3=Anderson |name-list-style=amp |title=Transmutation of Mercury by Fast Neutrons |date=1941 |journal=] |volume=60 |issue=7 |pages=473–479 |doi=10.1103/PhysRev.60.473 |bibcode=1941PhRv...60..473S}}</ref> In 1980, ] transmuted several thousand atoms of bismuth into gold at the Lawrence Berkeley Laboratory.<ref>{{Cite journal|last1=Aleklett |first1=K.|last2=Morrissey |first2=D.|last3=Loveland |first3=W.|last4=McGaughey |first4=P.|last5=Seaborg |first5=G.|year=1981|title=Energy dependence of <sup>209</sup>Bi fragmentation in relativistic nuclear collisions|journal=]|volume=23 |issue=3 |page=1044|bibcode=1981PhRvC..23.1044A|doi=10.1103/PhysRevC.23.1044}}</ref><ref>{{cite news |url=https://www.telegraph.co.uk/education/4791069/The-Philosophers-Stone.html |newspaper=] |first=Robert |last=Matthews |title=The Philosopher's Stone |date=2 December 2001 |access-date=22 September 2020 }}</ref> Gold can be manufactured in a nuclear reactor, but doing so is highly impractical and would cost far more than the value of the gold that is produced.<ref>{{cite book |last1=Shipman |first1=James |last2=Wilson |first2=Jerry D. |last3=Higgins |first3=Charles A. |title=An Introduction to Physical Science |date=2012 |publisher=Cengage Learning |isbn=9781133709497 |page=273 |edition=13th}}</ref>

== Chemistry ==
{{Main|Gold compounds}}
]
Although gold is the most noble of the noble metals,<ref>{{cite journal |doi=10.1038/376238a0 |title=Why gold is the noblest of all the metals |date=1995 |last1=Hammer |first1=B. |last2=Norskov |first2=J. K. |journal=Nature |volume=376 |issue=6537 |pages=238–240 |bibcode=1995Natur.376..238H|s2cid=4334587 }}</ref><ref>{{cite journal |doi=10.1103/PhysRevB.6.4370 |title=Optical Constants of the Noble Metals |date=1972 |last1=Johnson |first1=P. B. |last2=Christy |first2=R. W. |journal=Physical Review B |volume=6 |issue=12 |pages=4370–4379 |bibcode=1972PhRvB...6.4370J}}</ref> it still forms many diverse compounds. The ] of gold in its compounds ranges from −1 to +5, but Au(I) and Au(III) dominate its chemistry. Au(I), referred to as the aurous ion, is the most common oxidation state with soft ]s such as ]s, ]s, and ]s. Au(I) compounds are typically linear. A good example is {{chem2|]}}, which is the soluble form of gold encountered in mining. The binary ]s, such as ], form zigzag polymeric chains, again featuring linear coordination at Au. Most ] are Au(I) derivatives.<ref>{{cite journal |last=Shaw III |first=C. F. |title=Gold-Based Medicinal Agents |journal=Chemical Reviews |date=1999 |volume=99 |issue=9 |pages=2589–2600 |doi=10.1021/cr980431o |pmid=11749494}}</ref>

Au(III) (referred to as auric) is a common oxidation state, and is illustrated by ], {{chem2|Au2Cl6}}. The gold atom centers in Au(III) complexes, like other d<sup>8</sup> compounds, are typically ], with ]s that have both ] and ]ic character. ] is also known, an example of a ].

Gold does not react with oxygen at any temperature<ref>{{cite web |url=http://chemwiki.ucdavis.edu/Core/Inorganic_Chemistry/Descriptive_Chemistry/Elements_Organized_by_Block/2_p-Block_Elements/Group_16%253A_The_Oxygen_Family/Chemistry_of_Oxygen |title=Chemistry of Oxygen |website=Chemwiki ] |access-date=1 May 2016 |date=2 October 2013 |archive-date=14 July 2016 |archive-url=https://web.archive.org/web/20160714004304/http://chemwiki.ucdavis.edu/Core/Inorganic_Chemistry/Descriptive_Chemistry/Elements_Organized_by_Block/2_p-Block_Elements/Group_16:_The_Oxygen_Family/Chemistry_of_Oxygen |url-status=dead }}</ref> and, up to 100&nbsp;°C, is resistant to attack from ozone:<ref>{{cite book |editor-last1=Craig |editor-first1=B. D.|editor-last2= Anderson|editor-first2=D. B. |title=Handbook of Corrosion Data |date=1995 |publisher=ASM International |location=Materials Park, Ohio |isbn=978-0-87170-518-1 |page=587}}</ref>
<math chem display=block>\ce{Au + O2 -> }(\text{no reaction})</math>
<math chem display=block>\ce{Au{} + O3 -> }(\text{no reaction})</math>

Some free ]s react to form the corresponding gold halides.<ref>{{Cite book |last1=Wiberg |first1=Egon |last2=Wiberg |first2=Nils |last3=Holleman |first3=Arnold Frederick |name-list-style=amp |date=2001 |title=Inorganic Chemistry |edition=101st |publisher=Academic Press |isbn=978-0-12-352651-9 |page=1286 }}</ref> Gold is strongly attacked by fluorine at dull-red heat<ref>{{Cite book |url=https://books.google.com/books?id=Mtth5g59dEIC |title=Inorganic Chemistry |last1=Wiberg |first1=Egon |last2=Wiberg |first2=Nils |date=2001 |publisher=Academic Press |isbn=978-0-12-352651-9 |page=404}}</ref> to form ] {{chem2|AuF3}}. Powdered gold reacts with chlorine at 180&nbsp;°C to form ] {{chem2|AuCl3}}.<ref>{{harvnb|Wiberg|Wiberg|Holleman|2001|pp=1286–1287}}</ref> Gold reacts with bromine at 140&nbsp;°C to form a combination of ] {{chem2|AuBr3}} and ] AuBr, but reacts very slowly with iodine to form ] AuI:
<chem display=block>2 Au{} + 3 F2 -> 2 AuF3</chem>
<chem display=block>2 Au{} + 3 Cl2 -> 2 AuCl3</chem>
<chem display=block>2 Au{} + 2 Br2 -> AuBr3{} + AuBr</chem>
<chem display=block>2 Au{} + I2 -> 2 AuI</chem>

Gold does not react with sulfur directly,<ref name="Emery-1961">{{cite web |url=http://library.lanl.gov/cgi-bin/getfile?rc000062.pdf |last1=Emery |first1=J. F. |last2=Ledditcotte |first2=G. W. |title=Nuclear Science Series (NAS-NS 3036) The Radio Chemistry of Gold |date=May 1961 |agency=US Atomic Energy Commission |publisher=National Academy of Sciences — National Research Council — Subcommittee on Radio Chemistry |location=Oak Ridge, TN |url-status=live |access-date=24 February 2021 |archive-url=https://web.archive.org/web/20041110193206/http://library.lanl.gov/cgi-bin/getfile?rc000062.pdf |archive-date=10 November 2004}}</ref> but ] can be made by passing ] through a dilute solution of gold(III) chloride or ].

Unlike sulfur, phosphorus reacts directly with gold at elevated temperatures to produce ] (Au<sub>2</sub>P<sub>3</sub>).<ref>{{cite journal |author1=Wolfgang Jeitschko |author2=Manfred H. Moller |title=The crystal structures of Au2P3 and Au7P10I, polyphosphides with weak Au–Au interactions |journal=Acta Crystallographica B |date=1979 |volume=35 |issue=3 |pages=573–579 |doi=10.1107/S0567740879004180 |bibcode=1979AcCrB..35..573J |language=en}}</ref>

Gold readily dissolves in ] at room temperature to form an ], and forms ]s with many other metals at higher temperatures. These alloys can be produced to modify the hardness and other metallurgical properties, to control ] or to create exotic colors.<ref name="WorldGoldCouncil" />

Gold is unaffected by most acids. It does not react with ], ], ], ], ], or ]. It does react with ], and is dissolved by ], a 1:3 mixture of ] and ]. Nitric acid oxidizes the metal to +3 ions, but only in minute amounts, typically undetectable in the pure acid because of the chemical equilibrium of the reaction. However, the ions are removed from the equilibrium by hydrochloric acid, forming {{chem2|AuCl4(−)}} ions, or ], thereby enabling further oxidation:
<chem display=block>2 Au{} + 6 H2SeO4 -> Au2(SeO4)3{} + 3 H2SeO3{} + 3 H2O</chem>
<chem display=block>Au{} + 4HCl{} + HNO3 -> HAuCl4{} + NO\uparrow + 2H2O </chem>

Gold is similarly unaffected by most bases. It does not react with ], ], or ] ] or ]. It does however, react with ] or ] under alkaline conditions when ] is present to form soluble complexes.<ref name="Emery-1961" />

Common ]s of gold include +1 (gold(I) or aurous compounds) and +3 (gold(III) or auric compounds). Gold ions in solution are readily ] and ] as metal by adding any other metal as the ]. The added metal is ] and dissolves, allowing the gold to be displaced from solution and be recovered as a solid precipitate.

=== Rare oxidation states ===
Less common oxidation states of gold include −1, +2, and +5.

The −1 oxidation state occurs in aurides, compounds containing the {{chem2|Au−}} ]. ] (CsAu), for example, crystallizes in the ] motif;<ref name="Jansen-2005">{{Cite journal |title=Effects of relativistic motion of electrons on the chemistry of gold and platinum |first=Martin |last=Jansen |journal=Solid State Sciences |volume=7 |issue=12 |date=2005 |doi=10.1016/j.solidstatesciences.2005.06.015 |pages=1464–1474 |bibcode=2005SSSci...7.1464J|doi-access=free}}</ref> rubidium, potassium, and ] aurides are also known.<ref name="Holleman-2001">{{cite book |last1=Holleman |first1=A. F. |last2=Wiberg |first2=E. |title=Inorganic Chemistry |publisher=Academic Press |location=San Diego |year=2001 |isbn=978-0-12-352651-9}}</ref> Gold has the highest ] of any metal, at 222.8&nbsp;kJ/mol, making {{chem2|Au−}} a stable species,<ref name="Jansen-2008">{{cite journal |last=Jansen |first=Martin |title=The chemistry of gold as an anion |journal=Chemical Society Reviews |date=2008 |volume=37 |issue=9 |pages=1826–1835 |doi=10.1039/b708844m |pmid=18762832}}</ref> analogous to the ]s.

Gold also has a –1 oxidation state in covalent complexes with the ] transition metals, such as in titanium tetraauride and the analogous zirconium and hafnium compounds. These chemicals are expected to form gold-bridged ]s in a manner similar to ].<ref>{{cite journal |title= Gold Behaves as Hydrogen in the Intermolecular Self-Interaction of Metal Aurides MAu<sub>4</sub> (M=Ti, Zr, and Hf) |first1= Jaehoon |last1= Jung |first2= Hyemi |last2= Kim |first3= Jong Chan |last3= Kim |first4= Min Hee |last4= Park |first5= Young-Kyu |last5= Han |journal= Chemistry: An Asian Journal |volume= 6 |issue= 3 |year= 2011 |pages= 868–872 |doi= 10.1002/asia.201000742 |pmid= 21225974 }}</ref>

Gold(II) compounds are usually ] with Au–Au bonds such as 2Cl2}}. The evaporation of a solution of {{chem2|Au(OH)3}} in concentrated {{chem2|H2SO4}} produces red crystals of ], {{chem2|Au2(SO4)2}}. Originally thought to be a mixed-valence compound, it has been shown to contain {{chem2|Au2(4+)}} cations, analogous to the better-known ] ion, {{chem2|Hg2(2+)}}.<ref>{{Cite journal |last=Wickleder |first=Mathias S. |doi=10.1002/1521-3749(200109)627:9<2112::AID-ZAAC2112>3.0.CO;2-2 |date=2001 |title=AuSO<sub>4</sub>: A True Gold(II) Sulfate with an Au<sub>2</sub><sup>4+</sup> Ion |journal=Journal of Inorganic and General Chemistry |volume=627 |pages=2112–2114 |issue=9}}</ref><ref>{{Cite book |last=Wickleder |first=Mathias S. |title=Handbook of chalcogen chemistry: new perspectives in sulfur, selenium and tellurium |editor-first=Francesco A. |editor-last=Devillanova |publisher=Royal Society of Chemistry |date=2007 |isbn=978-0-85404-366-8 |pages=359–361 |url=https://books.google.com/books?id=IvGnUAaSqOsC&pg=PA359}}</ref> A gold(II) complex, the ] cation, which contains ] as a ligand, occurs in {{chem2|(Sb2F11)2}}.<ref>{{Cite journal |last1=Seidel |first1=S. |last2=Seppelt |first2=K. |title=Xenon as a Complex Ligand: The Tetra Xenono Gold(II) Cation in AuXe<sub>4</sub><sup>2+</sup>(Sb<sub>2</sub>F<sub>11</sub><sup>−</sup>)<sub>2</sub> |journal=Science |date=2000 |volume=290 |issue=5489 |pages=117–118 |doi=10.1126/science.290.5489.117 |pmid=11021792 |bibcode=2000Sci...290..117S}}</ref> In September 2023, a novel type of ] consisting of Au<sup>3+</sup> and Au<sup>2+</sup> cations in its crystal structure has been found.<ref>{{Cite web |last=University |first=Stanford |title=Striking rare gold: Researchers unveil new material infused with gold in an exotic chemical state |url=https://phys.org/news/2023-09-rare-gold-unveil-material-infused.html |access-date=2 October 2023 |website=phys.org |language=en}}</ref> It has been shown to be unexpectedly stable at normal conditions.

], along with its derivative anion, {{chem2|AuF6-}}, and its ], ], is the sole example of gold(V), the highest verified oxidation state.<ref>{{Cite journal |last1=Riedel |first1=S. |last2=Kaupp |first2=M. |title=Revising the Highest Oxidation States of the 5d Elements: The Case of Iridium(+VII) |journal=Angewandte Chemie International Edition |date=2006 |volume=45 |issue=22 |pmid=16639770 |pages=3708–3711 |doi=10.1002/anie.200600274}}</ref>

Some gold compounds exhibit '']'', which describes the tendency of gold ions to interact at distances that are too long to be a conventional Au–Au bond but shorter than ]. The interaction is estimated to be comparable in strength to that of a ].

Well-defined cluster compounds are numerous.<ref name="Holleman-2001" /> In some cases, gold has a fractional oxidation state. A representative example is the octahedral species {{chem2|{Au(])}6(2+)}}.

==Origin==
===Gold production in the universe===
] in ] and how it distorted the contemporary geological structures. The present erosion level is shown. ] is located where the ] (the yellow layer) is exposed at the "present surface" line, just inside the crater rim, on the left. Not to scale.]]
Gold is thought to have been produced in ], and from the ],<ref>{{cite news |url=https://www.cfa.harvard.edu/news/2013-19 |title=Earth's Gold Came from Colliding Dead Stars |work=David A. Aguilar & Christine Pulliam |publisher=cfa.harvard.edu |date=17 July 2013 |access-date=18 February 2018}}</ref> and to have been present in the ] from which the ] formed.<ref>{{Cite journal |doi=10.1086/190111 |title=Nucleosynthesis of Heavy Elements by Neutron Capture |date=1965 |last1=Seeger |first1=Philip A. |last2=Fowler |first2=William A. |last3=Clayton |first3=Donald D. |journal=The Astrophysical Journal Supplement Series |volume=11 |page=121 |bibcode=1965ApJS...11..121S |url=http://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=1307&context=physastro_pubs}}</ref>

Traditionally, gold in the universe is thought to have formed by the ] (rapid neutron capture) in ],<ref>{{cite web |url=http://chandra.harvard.edu/xray_sources/supernovas.html |title=Supernovas & Supernova Remnants |publisher=] |access-date=28 February 2014}}</ref> but more recently it has been suggested that gold and other elements heavier than ] may also be produced in quantity by the r-process in the ] of ]s.<ref>{{cite journal |last1=Berger |first1=E. |first2=W. |last2=Fong |first3=R. |last3=Chornock |date=2013 |title=An r-process Kilonova Associated with the Short-hard GRB 130603B |journal=The Astrophysical Journal Letters |volume=774 |issue=2 |page=4 |doi=10.1088/2041-8205/774/2/L23 |arxiv=1306.3960 |bibcode=2013ApJ...774L..23B|s2cid=669927 }}</ref> In both cases, satellite spectrometers at first only indirectly detected the resulting gold.<ref>"we have no spectroscopic evidence that elements have truly been produced," wrote author Stephan Rosswog.{{cite journal |last=Rosswog |first=Stephan |date=29 August 2013 |title=Astrophysics: Radioactive glow as a smoking gun |journal=] |volume=500 |issue=7464 |pages=535–536 |doi=10.1038/500535a |bibcode=2013Natur.500..535R |pmid=23985867|s2cid=4401544 }}</ref> However, in August 2017, the spectroscopic signatures of heavy elements, including gold, were observed by electromagnetic observatories in the ] neutron star merger event, after ] detectors confirmed the event as a neutron star merger.<ref>{{cite news |title=LIGO and Virgo make first detection of gravitational waves produced by colliding neutron stars |url=https://www.ligo.org/detections/GW170817/press-release/pr-english.pdf |archive-url=https://web.archive.org/web/20171031030151/http://www.ligo.org/detections/GW170817/press-release/pr-english.pdf |archive-date=31 October 2017 |url-status=live |publisher=] & ] collaborations |date=16 October 2017 |access-date=15 February 2018}}</ref> Current astrophysical models suggest that this single neutron star merger event generated between 3 and 13 ]es of gold. This amount, along with estimations of the rate of occurrence of these neutron star merger events, suggests that such mergers may produce enough gold to account for most of the abundance of this element in the universe.<ref>{{cite news |title=Neutron star mergers may create much of the universe's gold |work=Sid Perkins |publisher=Science AAAS |url=https://www.science.org/content/article/neutron-star-mergers-may-create-much-universe-s-gold |date=20 March 2018 |access-date=24 March 2018}}</ref>

===Asteroid origin theories===
Because the Earth was molten ], almost all of the gold present in the ] probably sank into the ]. Therefore, as hypothesized in one model, most of the gold in the Earth's ] and ] is thought to have been delivered to Earth by ]s during the ], about 4 billion years ago.<ref name="Willbold-2011">{{cite journal |last2=Elliott |first2=Tim |last3=Moorbath |first3=Stephen |date=2011 |title=The tungsten isotopic composition of the Earth's mantle before the terminal bombardment |journal=Nature |volume=477 |issue=7363 |pages=195–8 |bibcode=2011Natur.477..195W |doi=10.1038/nature10399 |pmid=21901010 |last1=Willbold |first1=Matthias|s2cid=4419046 }}</ref><ref name="Battison-2011">{{cite news |url=https://www.bbc.co.uk/news/science-environment-14827624 |title=Meteorites delivered gold to Earth |last=Battison |first=Leila |date=8 September 2011 |work=] }}</ref>

Gold which is reachable by humans has, in one case, been associated with a particular asteroid impact. The asteroid that formed ] 2.020&nbsp;billion years ago is often credited with seeding the ] in ] with the richest gold deposits on earth.<ref>{{cite web |url=http://superiormining.com/properties/south_africa/mangalisa/geology/ |title=Mangalisa Project |publisher=Superior Mining International Corporation |access-date=29 December 2014}}</ref><ref>{{cite journal |last1=Therriault |first1=A. M. |first2=R. A. F. |last2=Grieve |first3=W. U. |last3=Reimold |title=Original size of the Vredefort Structure: Implications for the geological evolution of the Witwatersrand Basin |journal=Meteoritics |volume=32 |pages=71–77 |date=1997 |bibcode=1997M&PS...32...71T |name-list-style=amp |doi=10.1111/j.1945-5100.1997.tb01242.x|doi-access=free }}</ref><ref>. Cosmos Magazine (28 July 2008). Retrieved on 12 September 2013.</ref><ref>{{Cite journal |last1=Corner |first1=B. |last2=Durrheim |first2=R. J. |last3=Nicolaysen |first3=L. O. |title=Relationships between the Vredefort structure and the Witwatersrand basin within the tectonic framework of the Kaapvaal craton as interpreted from regional gravity and aeromagnetic data |doi=10.1016/0040-1951(90)90089-Q |journal=Tectonophysics |volume=171 |issue=1 |pages=49–61 |year=1990 |bibcode=1990Tectp.171...49C}}</ref> However, this scenario is now questioned. The gold-bearing ] rocks were laid down between 700 and 950&nbsp;million years before the Vredefort impact.<ref name="McCarthy-2005">McCarthy, T., Rubridge, B. (2005). ''The Story of Earth and Life''. Struik Publishers, Cape Town. pp. 89–90, 102–107, 134–136. {{ISBN|1 77007 148 2}}</ref><ref name="Norman-2006">Norman, N., Whitfield, G. (2006) ''Geological Journeys''. Struik Publishers, Cape Town. pp. 38–49, 60–61. {{ISBN|9781770070622}}</ref> These gold-bearing rocks had furthermore been covered by a thick layer of Ventersdorp lavas and the ] of rocks before the meteor struck, and thus the gold did not actually arrive in the asteroid/meteorite. What the Vredefort impact achieved, however, was to distort the ] in such a way that the gold-bearing rocks were brought to the present ] in ], on the ], just inside the rim of the original {{cvt|300|km|adj=on}} diameter crater caused by the meteor strike. The discovery of the deposit in 1886 launched the ]. Some 22% of all the gold that is ascertained to exist today on Earth has been extracted from these Witwatersrand rocks.<ref name="Norman-2006" />

===Mantle return theories===
Much of the rest of the gold on Earth is thought to have been incorporated into the planet since its very beginning, as ] formed the ]. In 2017, an international group of scientists established that gold "came to the Earth's surface from the deepest regions of our planet",<ref>{{cite web |author=University of Granada |title=Scientists reveal the mystery about the origin of gold |website=ScienceDaily |date=21 November 2017 |access-date=27 March 2018 |url=https://www.sciencedaily.com/releases/2017/11/171121095128.htm}}</ref> the mantle, as evidenced by their findings at ] in the ].<ref>{{cite journal |last1=Tassara |first1=Santiago |last2=González-Jiménez |first2=José M. |last3=Reich |first3=Martin |last4=Schilling |first4=Manuel E. |last5=Morata |first5=Diego |last6=Begg |first6=Graham |last7=Saunders |first7=Edward |last8=Griffin |first8=William L. |last9=O’Reilly |first9=Suzanne Y.|last10=Grégoire|first10=Michel |last11=Barra |first11=Fernando |last12=Corgne |first12=Alexandre |title=Plume-subduction interaction forms large auriferous provinces |journal=Nature Communications |volume=8 |issue=1 |pages=843 |year=2017 |issn=2041-1723 |doi=10.1038/s41467-017-00821-z |pmid=29018198 |pmc=5634996 |bibcode=2017NatCo...8..843T}}</ref>{{clarify|reason=this directly contradicts the first paragraph of the next section|date=April 2019}}

== Occurrence ==
]]]

On Earth, gold is found in ]s in rock formed from the ] time onward.<ref name="La Niece-2009" /> It most often occurs as a ], typically in a metal ] with silver (i.e. as a gold/silver ]). Such alloys usually have a silver content of 8–10%. ] is elemental gold with more than 20% silver, and is commonly known as ]. Electrum's color runs from golden-silvery to silvery, dependent upon the silver content. The more silver, the lower the ].
]
Native gold occurs as very small to microscopic particles embedded in rock, often together with ] or ]s such as "]", which is a ].<ref>{{cite web |url=http://arizonagoldprospectors.com/formation.htm |title=Formation of Lode Gold Deposits |author=Heike, Brian |url-status=dead |archive-url=https://web.archive.org/web/20130122100747/http://arizonagoldprospectors.com/formation.htm |archive-date=22 January 2013 |publisher=Arizona Gold Prospectors|access-date=24 February 2021}}</ref> These are called ] deposits. The metal in a native state is also found in the form of free flakes, grains or larger ]<ref name="La Niece-2009" /> that have been eroded from rocks and end up in ] deposits called ]s. Such free gold is always richer at the exposed surface of gold-bearing veins, owing to the ] of accompanying minerals followed by weathering; and by washing of the dust into streams and rivers, where it collects and can be welded by water action to form nuggets.

Gold sometimes occurs combined with ] as the ]s ], ], ], ] and ] (see ]s), and as the rare bismuthide maldonite ({{chem2|Au2Bi}}) and antimonide ] ({{chem2|AuSb2}}). Gold also occurs in rare alloys with ], ], and ]: the minerals ] ({{chem2|Cu3Au}}), novodneprite ({{chem2|AuPb3}}) and weishanite ({{chem2|(Au,Ag)3Hg2}}).

A 2004 research paper suggests that microbes can sometimes play an important role in forming gold deposits, transporting and precipitating gold to form grains and nuggets that collect in alluvial deposits.<ref>{{cite web |url=http://www.abc.net.au/science/news/enviro/EnviroRepublish_1032376.htm |title=Environment & Nature News&nbsp;– Bugs grow gold that looks like coral |date=28 January 2004 |access-date=22 July 2006 |publisher=abc.net.au}} This is doctoral research undertaken by Frank Reith at the Australian National University, published 2004.</ref>

A 2013 study has claimed water in faults vaporizes during an earthquake, depositing gold. When an earthquake strikes, it moves along a ]. Water often lubricates faults, filling in fractures and jogs. About {{convert|10|km}} below the surface, under very high temperatures and pressures, the water carries high concentrations of carbon dioxide, silica, and gold. During an earthquake, the fault jog suddenly opens wider. The water inside the void instantly vaporizes, flashing to steam and forcing silica, which forms the mineral quartz, and gold out of the fluids and onto nearby surfaces.<ref>{{cite web |url=https://news.yahoo.com/earthquakes-turn-water-gold-180356174.html |title=Earthquakes Turn Water into Gold |date=17 March 2013 |access-date=18 March 2013}}</ref>

=== Seawater ===
The world's ]s contain gold. Measured concentrations of gold in the Atlantic and Northeast Pacific are 50–150 ]/L or 10–30 parts per ] (about 10–30&nbsp;g/km<sup>3</sup>). In general, gold concentrations for south Atlantic and central Pacific samples are the same (~50 femtomol/L) but less certain. Mediterranean deep waters contain slightly higher concentrations of gold (100–150 femtomol/L), which is attributed to wind-blown dust or rivers. At 10 parts per quadrillion, the Earth's ] would hold 15,000 tonnes of gold.<ref>{{Cite journal |doi=10.1016/0012-821X(90)90060-B |title=Gold in seawater |first1=K. |last1=Kenison Falkner |author-link1=Kelly Falkner|journal=Earth and Planetary Science Letters |volume=98 |date=1990 |pages=208–221 |last2=Edmond |first2=J. |issue=2 |bibcode=1990E&PSL..98..208K}}</ref> These figures are three orders of magnitude less than reported in the literature prior to 1988, indicating contamination problems with the earlier data.

A number of people have claimed to be able to economically recover gold from ], but they were either mistaken or acted in an intentional deception. ] ran a gold-from-seawater swindle in the ] in the 1890s, as did an English fraudster in the early 1900s.<ref>Plazak, Dan ''A Hole in the Ground with a Liar at the Top'' (Salt Lake: Univ. of Utah Press, 2006) {{ISBN|0-87480-840-5}} (contains a chapter on gold-from seawater swindles)</ref> ] did research on the extraction of gold from sea water in an effort to help pay ]'s reparations following ].<ref>{{Cite journal |title=Das Gold im Meerwasser |first=F. |last=Haber |volume=40 |issue=11 |date=1927 |doi=10.1002/ange.19270401103 |pages=303–314 |journal=Zeitschrift für Angewandte Chemie|bibcode=1927AngCh..40..303H }}</ref> Based on the published values of 2 to 64 ppb of gold in seawater, a commercially successful extraction seemed possible. After analysis of 4,000 water samples yielding an average of 0.004 ppb, it became clear that extraction would not be possible, and he ended the project.<ref>{{Cite journal |doi=10.1016/0375-6742(88)90051-9 |title=Concentration of gold in natural waters |first=J. B. |last=McHugh |journal=Journal of Geochemical Exploration |volume=30 |date=1988 |pages=85–94 |issue=1–3 |bibcode=1988JCExp..30...85M |url=https://zenodo.org/record/1258491 |archive-url=https://web.archive.org/web/20200307233511/https://zenodo.org/record/1258491 |url-status=dead |archive-date=7 March 2020}}</ref><!--10.1007/BF01497020-->

== History ==
].]]
], from the ] ] of '']'', carrying gold on a yoke, circa 500 BC.<ref name="Iran-1972">"Furthermore the second member of Delegation XVIII is carrying four small but evidently heavy jars on a yoke, probably containing the gold dust which was the tribute paid by the Indians." in {{cite book |last1=Iran |first1=Délégation archéologique française en |title=Cahiers de la Délégation archéologique française en Iran |date=1972 |publisher=Institut français de recherches en Iran (section archéologique) |pages=146 |url=https://books.google.com/books?id=itIRAQAAMAAJ}}</ref>]]

], between circa 600–1600 AD. The figure refers to the ceremony of the legend of ]. The '']'' used to cover his body in gold dust, and from his ], he offered treasures to the '']'' goddess in the middle of the ]. This old Muisca tradition became the origin of the legend of El Dorado.<br /><small>This Muisca raft figure is on display in the ], Colombia.</small>]]

The earliest recorded metal employed by humans appears to be gold, which can be found ] or "]". Small amounts of natural gold have been found in Spanish caves used during the late ] period, {{Circa|40,000 BC}}.<ref>{{Cite book |last=Yannopoulos |first=J. C. |url=https://books.google.com/books?id=hE7uBwAAQBAJ&dq=history+of+gold+begins+in+antiquity.+Bits+of+gold+were+found+in+Spanish+caves+that+were+used+by+Paleolithic+people+around+40,000+B.C.&pg=PP8 |title=The Extractive Metallurgy of Gold |publisher=Springer US |year=1991 |isbn=978-1-4684-8427-4 |location=Boston, MA |pages=ix |language=en |doi=10.1007/978-1-4684-8425-0}}</ref>

The oldest gold artifacts in the world are from ] and are dating back to the 5th millennium BC (4,600 BC to 4,200 BC), such as those found in the ] near Lake Varna and the ] coast, thought to be the earliest "well-dated" finding of gold artifacts in history.<ref>{{cite web | url=https://www.smithsonianmag.com/travel/varna-bulgaria-gold-graves-social-hierarchy-prehistoric-archaelogy-smithsonian-journeys-travel-quarterly-180958733/ | title=Mystery of the Varna Gold: What Caused These Ancient Societies to Disappear? }}</ref><ref name="La Niece-2009">{{cite book |last=La Niece |first=Susan (senior metallurgist in the British Museum Department of Conservation and Scientific Research) |url=https://books.google.com/books?id=oAfITjcHiZ0C |title=Gold |page=10 |publisher=Harvard University Press |access-date=10 April 2012 |isbn=978-0-674-03590-4 |date=15 December 2009}}</ref><ref>{{cite web | url=https://www.smithsonianmag.com/smart-news/oldest-gold-object-unearthed-bulgaria-180960093/ | title=World's Oldest Gold Object May Have Just Been Unearthed in Bulgaria }}</ref>

Gold artifacts probably made their first appearance in Ancient Egypt at the very beginning of the pre-dynastic period, at the end of the fifth millennium BC and the start of the fourth, and smelting was developed during the course of the 4th millennium; gold artifacts appear in the archeology of Lower Mesopotamia during the early 4th millennium.<ref>Sutherland, C.H.V, Gold (London, Thames & Hudson, 1959) p 27 ff.</ref> As of 1990, gold artifacts found at the ] cave cemetery of the ] in ] were the earliest from the Levant.<ref name="Gopher-1990">{{cite journal |last1=Gopher |first1=A. |first2=T. |last2=Tsuk |first3=S. |last3=Shalev |first4=R. |last4=Gophna |name-list-style=amp |title=Earliest Gold Artifacts in the Levant |date=August–October 1990 |journal=Current Anthropology |volume=31 |issue=4 |pages=436–443 |jstor=2743275 |doi=10.1086/203868|s2cid=143173212 }}</ref> Gold artifacts such as the ] and the ] appeared in Central Europe from the 2nd millennium BC ].

The oldest known map of a gold mine was drawn in the 19th Dynasty of Ancient Egypt (1320–1200 BC), whereas the first written reference to gold was recorded in the 12th Dynasty around 1900 BC.<ref>Pohl, Walter L. (2011) ''Economic Geology Principles and Practice''. Wiley. p. 208. {{doi|10.1002/9781444394870.ch2}}. {{ISBN|9781444394870 }}</ref> ]s from as early as 2600 BC describe gold, which King ] of the ] claimed was "more plentiful than dirt" in Egypt.<ref>{{cite book |last1=Montserrat |first1=Dominic |url=https://books.google.com/books?id=bfRbY4gInsQC |title=Akhenaten: History, Fantasy and Ancient Egypt |isbn=978-0-415-30186-2 |date=21 February 2003|publisher=Psychology Press }}</ref> Egypt and especially ] had the resources to make them major gold-producing areas for much of history. One of the earliest known maps, known as the ], shows the plan of a ] in Nubia together with indications of the local ]. The primitive working methods are described by both ] and ], and included ]. Large mines were also present across the ] in what is now ].

], funerary or marriage material, 370–360 BC; from a grave in ], ]]]
Gold is mentioned in the ] numbered ]<ref>], 1987, 1992. The Amarna Letters, pp. 43–46.</ref> and ]<ref>] 1987, 1992. The Amarna Letters. EA 245, "To the Queen Mother: Some Missing Gold Statues", pp. 84–86.</ref> from around the 14th century BC.<ref> {{Webarchive|url=https://web.archive.org/web/20080611092705/http://www.britannica.com/eb/article-9005276/Akhenaton |date=11 June 2008 }}. '']''</ref><ref>Dodson, Aidan and Hilton, Dyan (2004). ''The Complete Royal Families of Ancient Egypt''. Thames & Hudson. {{ISBN|0-500-05128-3}}</ref>

Gold is mentioned frequently in the ], starting with ] 2:11 (at ]), the story of the ], and many parts of the temple including the ] and the golden altar. In the ], it is included with the gifts of the ] in the first chapters of Matthew. The ] 21:21 describes the city of ] as having streets "made of pure gold, clear as crystal". Exploitation of gold in the south-east corner of the ] is said to date from the time of ], and this gold was important in the establishment of what is probably the world's earliest coinage in ] around 610 BC.<ref name="Lion-2003" /> The legend of the ] dating from eighth century BCE may refer to the use of fleeces to trap gold dust from ]s in the ancient world. From the 6th or 5th century BC, the ] circulated the ], one kind of square gold coin.

In ], new methods for extracting gold on a large scale were developed by introducing ] methods, especially in ] from 25 BC onwards and in ] from 106 AD onwards. One of their largest mines was at ] in ], where seven long ] enabled them to sluice most of a large alluvial deposit. The mines at ] in ] were also very large, and until very recently,{{when|date=January 2024}} still mined by opencast methods. They also exploited smaller deposits in ], such as placer and hard-rock deposits at ]. The various methods they used are well described by ] in his ] '']'' written towards the end of the first century AD.

During ]'s (ruler of the ] from 1312 to 1337) ] to ] in 1324, he passed through ] in July 1324, and was reportedly accompanied by a ] that included thousands of people and nearly a hundred camels where he gave away so much gold that it depressed the price in Egypt for over a decade, causing high ].<ref>. Black History Pages</ref> A contemporary Arab historian remarked:

{{blockquote|Gold was at a high price in Egypt until they came in that year. The mithqal did not go below 25 dirhams and was generally above, but from that time its value fell and it cheapened in price and has remained cheap till now. The mithqal does not exceed 22 dirhams or less. This has been the state of affairs for about twelve years until this day by reason of the large amount of gold which they brought into Egypt and spent there .|sign=]|source=Kingdom of Mali<ref>{{cite web |title=Kingdom of Mali&nbsp;– Primary Source Documents |url=http://www.bu.edu/africa/outreach/resources/k_o_mali/ |website=African studies Center |publisher=] |access-date=30 January 2012}}</ref>}}

] (171–145&nbsp;BC), one of the Hellenistic rulers of ancient ]. This is the largest known gold coin minted in antiquity ({{cvt|169.2|g}}; {{cvt|58|mm}}).<ref>{{cite book |last1=Monnaie |first1=Eucratide I. (roi de Bactriane) Autorité émettrice de |title= |url=https://gallica.bnf.fr/ark:/12148/btv1b8510709q}}</ref>]]
The European exploration of the Americas was fueled in no small part by reports of the gold ornaments displayed in great profusion by ] peoples, especially in ], ], ] and ]. The ]s regarded gold as the product of the gods, calling it literally "god excrement" (''teocuitlatl'' in ]), and after ] was killed, most of this gold was shipped to Spain.<ref>{{Cite book |first1=Frances |last1=Berdan |first2=Patricia Rieff |last2=Anawalt |title=The Codex Mendoza |volume=2 |page=151 |publisher=] |date=1992 |isbn=978-0-520-06234-4}}</ref> However, for the ] gold was considered useless and they saw much greater value in other ] which were directly related to their utility, such as ], ], and ].<ref>. Sierra Nevada Virtual Museum. Retrieved on 4 May 2012.</ref>

] is applied to a legendary story in which precious stones were found in fabulous abundance along with gold coins. The concept of El Dorado underwent several transformations, and eventually accounts of the previous myth were also combined with those of a legendary lost city. El Dorado, was the term used by the Spanish Empire to describe a mythical tribal chief (zipa) of the Muisca native people in ], who, as an initiation rite, covered himself with gold dust and submerged in ]. The legends surrounding El Dorado changed over time, as it went from being a man, to a city, to a kingdom, and then finally to an empire.{{cn|date=January 2024}}

Beginning in the ], European ] and ] of ] was driven in large part by reports of gold deposits in the region, which was eventually referred to by Europeans as the "]".<ref>{{cite book | first=James Maxwell | last=Anderson|title=The History of Portugal | publisher=Greenwood Publishing Group | year=2000 | isbn=0-313-31106-4 | url=https://books.google.com/books?id=UoryGn9o4x0C | ref=refAnderson}}</ref> From the late 15th to early 19th centuries, European trade in the region was primarily focused in gold, along with ] and ].<ref>{{Cite book|last=Newitt|first=Malyn|url=https://books.google.com/books?id=fsoWg1yXKQUC&q=portuguese+in+ghana|title=The Portuguese in West Africa, 1415–1670: A Documentary History|date=28 June 2010|publisher=Cambridge University Press|isbn=978-1-139-49129-7|language=en}}</ref> The gold trade in West Africa was dominated by the ], who initially traded with the ] before branching out and trading with ], ], ] and ] merchants.<ref name="Green-2019">{{cite book |last1=Green |first1=Toby |title=A fistful of shells : West Africa from the rise of the slave trade to the age of revolution |date=31 January 2019 |location=London |isbn=978-0-241-00328-2 |pages=108, 247 |edition=Penguin Books Ltd. Kindle-Version}}</ref> British desires to secure control of West African gold deposits played a role in the ] of the late 19th century, which saw the Ashanti Empire ].<ref>{{cite book |last=Edgerton |first=Robert B. |year=2010 |title=The Fall of the Asante Empire: The Hundred-Year War For Africa's Gold Coast |publisher=Simon and Schuster |isbn=9781451603736 }}</ref>

Gold played a role in western culture, as a cause for desire and of corruption, as told in children's ]s such as ]—where Rumpelstiltskin turns hay into gold for the peasant's daughter in return for her child when she becomes a princess—and the stealing of the hen that lays golden eggs in ].

The top prize at the ] and many other sports competitions is the ].

75% of the presently accounted for gold has been extracted since 1910, two-thirds since 1950.{{ref needed|date=May 2024}}

One main goal of the ] was to produce gold from other substances, such as ]&nbsp;— presumably by the interaction with a mythical substance called the ]. Trying to produce gold led the alchemists to systematically find out what can be done with substances, and this laid the foundation for today's ], which can produce gold (albeit uneconomically) by using ].<ref>{{cite web |url=https://www.scientificamerican.com/article/fact-or-fiction-lead-can-be-turned-into-gold/ |title=Fact or Fiction?: Lead Can Be Turned into Gold |author=Matson, John |date=31 January 2014 |website=scientificamerican.com |access-date=21 November 2021}}</ref> Their symbol for gold was the circle with a point at its center (☉), which was also the ] symbol and the ancient ] for the ].

The ] is covered with an ultra-thin golden glassier. The ] Golden temple, the ], is a building covered with gold. Similarly the ] emerald ] ] (]) in ] has ornamental gold-leafed statues and roofs. Some European king and queen's ] were made of gold, and gold was used for the ] since antiquity. An ancient Talmudic text circa 100 AD describes ], receiving a "Jerusalem of Gold" (diadem). A Greek burial crown made of gold was found in a grave circa 370 BC.

<gallery mode="packed" heights="170px">
Gold leaf MET DP260372.jpg|] jewellery, 2300–2100 BC, gold, ], New York

Earrings from Shulgi.JPG|]ian earrings with ] inscriptions, 2093–2046 BC, gold, ], ], Iraq

File:Aegina treasure 10.jpg|Minoan cup, part of the ], 1850–1550 BC, gold, ]<ref>{{cite book|last1=La Niece|first1=Susan|title=Gold|date=2009|publisher=The British Museum Press|isbn=978-0-7141-5076-5|page=8|url=|language=en}}</ref>

Statuette of Amun MET DT553.jpg|]ian statuette of ], 945–715&nbsp;BC, gold, Metropolitan Museum of Art

Anillo de Sheshonq (46627183381).jpg|Ancient Egyptian signet ring, 664–525&nbsp;BC, gold, British Museum

File:Openwork dagger handle-IMG 4418-black.jpg|] cast openwork dagger hilt, 6th–5th centuries BC, gold, British Museum<ref>{{cite book|last1=La Niece|first1=Susan|title=Gold|date=2009|publisher=The British Museum Press|isbn=978-0-7141-5076-5|page=25|url=|language=en}}</ref>

Gold stater MET DP138743.jpg|] ], 323–315 BC, gold, Metropolitan Museum of Art

Gold funerary wreath MET DP257471.jpg|] funerary wreath, 4th–3rd century BC, gold, Metropolitan Museum of Art

Gold aureus of Hadrian MET DP104782b.jpg|] ] of ], 134–138 AD, gold, Metropolitan Museum of Art

Lime Container (Poporo) MET DT1262.jpg|] lime container, 5th–9th century, gold, Metropolitan Museum of Art

File:British Museum - Room 41 (20626313758).jpg|] belt buckle from ] with a ] ] pattern, 7th century, gold, British Museum<ref>{{cite book|last1=La Niece|first1=Susan|title=Gold|date=2009|publisher=The British Museum Press|isbn=978-0-7141-5076-5|page=76|url=|language=en}}</ref>

Byzantium, 11th century - Scyphate - 2001.25 - Cleveland Museum of Art.tif|] ], 1059–1067, gold, ], ], ], USA

Double Bat-Head Figure Pendant MET DT935.jpg|] pendant with two bat-head warriors who carry spears, 11th–16th century, gold, Metropolitan Museum of Art

File:AHOTWgold lama.JPG|] hollow model of a llama, 14th-15th centuries, gold, British Museum<ref>{{cite book|last1=La Niece|first1=Susan|title=Gold|date=2009|publisher=The British Museum Press|isbn=978-0-7141-5076-5|page=66|url=|language=en}}</ref>

File:The Judgement of Paris, Waddeson Bequest.jpg|] hat badge that shows the ], 16th century, enamelled gold, British Museum<ref>{{cite book|last1=La Niece|first1=Susan|title=Gold|date=2009|publisher=The British Museum Press|isbn=978-0-7141-5076-5|page=20|url=|language=en}}</ref>

Box with scene depicting Roman hero Gaius Mucius Scaevola before the Etruscan king Lars Porsena MET DP170836 (cropped).jpg|] box, by ], 1741, gold, Metropolitan Museum of Art

Jean Joseph de Saint-Germain - Candelabrum - 1946.81 - Cleveland Museum of Art.tif|Rococo candelabrum, by ], {{circa}}1750, gilt bronze, Cleveland Museum of Art

Tabatière Minerve, Mercure, Pégase (Louvre, OA 2121).jpg|Rococo snuff box with ], by ], 1750–1752, gold and painted enamel, Louvre<ref>{{cite web|url=https://collections.louvre.fr/en/ark:/53355/cl010111221|website=collections.louvre.fr|title=Tabatière|access-date=18 November 2023}}</ref>

File:Tabatière J-Frémin (Louvre, OA 6857).jpg|] snuff box, by ], 1763–1764, gold and painted enamel, Louvre<ref>{{cite web|url=https://collections.louvre.fr/en/ark:/53355/cl010099410|website=collections.louvre.fr|title=Tabatière ovale|access-date=18 November 2023}}</ref>

File:Washstand (athénienne or lavabo) MET DP106594.jpg|] washstand (athénienne or lavabo), 1800–1814, legs, base and shelf of yew wood, gilt bronze mounts, iron plate beneath shelf, Metropolitan Museum of Art
File:Clock, French, circa 1835-1840, gilt and patinated bronze, inherited from Maurice Quentin Bauchart, 1911, inv. 17741, Museum of Decorative Arts, Paris.jpg|] clock, unknown French maker, {{circa}}1835-1840, gilt and patinated bronze, ], Paris

File:Teapot, by Alphonse Debain, from Paris, 1900, gilt silver and ivory, inv. 2021.63.1 MAD Paris.jpg|] teapot, by ], gilt silver and ivory, Museum of Decorative Arts
</gallery>

=== Etymology ===
]'']]
''Gold'' is ] with similar words in many ], deriving via ] ] from ] ] {{gloss|to shine, to gleam; to be yellow or green}}.<ref>{{OEtymD|gold}}</ref><ref>Hesse, R W. (2007) {{Webarchive|url=https://web.archive.org/web/20221101113823/https://books.google.com/books?id=DIWEi5Hg93gC&pg=PA103 |date=1 November 2022 }}, Greenwood Publishing Group. {{ISBN|0313335079}}</ref>

The symbol ''Au'' is from the ] {{lang|la|]}} {{gloss|gold}}.<ref>Notre Dame University {{Webarchive|url=https://web.archive.org/web/20160205123228/http://www.archives.nd.edu/cgi-bin/lookup.pl?stem=Aurum&ending= |date=5 February 2016 }} Retrieved 7 June 2012</ref> The Proto-Indo-European ancestor of ''aurum'' was ''*h₂é-h₂us-o-'', meaning {{gloss|glow}}. This word is derived from the same ] (Proto-Indo-European ''*h₂u̯es-'' {{gloss|to dawn}}) as ], the ancestor of the Latin word {{lang|la|]}} {{gloss|dawn}}.<ref>{{cite book |last=de Vaan |first=Michel |title=Etymological Dictionary of Latin and the other Italic languages |date=2008 |publisher=Brill |location=Leiden: Boston |isbn=978-90-04-16797-1 |page=63}}</ref> This etymological relationship is presumably behind the frequent claim in scientific publications that {{lang|la|aurum}} meant {{gloss|shining dawn}}.<ref name="Christie-2011">Christie, A and Brathwaite, R. (Last updated 2 November 2011) , Institute of geological and Nuclear sciences Ltd&nbsp;– Retrieved 7 June 2012</ref>

=== Culture ===
{{anchor|Cultural history}}
] prior to Western contact]]
In popular culture gold is a high standard of excellence, often used in awards.<ref name="Jansen-2008" /> Great achievements are frequently rewarded with gold, in the form of ]s, gold ] and other decorations. Winners of athletic events and other graded competitions are usually awarded a gold medal. Many awards such as the ] are made from gold as well. Other award statues and prizes are depicted in gold or are ] (such as the ], the ], the ], the ], and the ]).<ref>H. G. Bachmann, ''The lure of gold : an artistic and cultural history'' (2006).</ref>

] in his ] used gold symbolism when referring to what is now known as the ]. Similarly, gold is associated with perfect or divine principles, such as in the case of the ] and the ]. Gold is further associated with the wisdom of aging and fruition. The fiftieth ] is golden. A person's most valued or most successful latter years are sometimes considered "golden years" or "golden jubilee". The height of a civilization is referred to as a ].<ref>Lubna Umar and Sarwet Rasul, "Critical Metaphor Analysis: Nawaz Sharif and the Myth of a Golden Time" ''NUML Journal of Critical Inquiry'' 15#2, (Dec 2017): 78–102.</ref>

====Religion====
], depicting a deity from northeast ]]]
The first known prehistoric human usages of gold were ] in nature.<ref>{{Cite web |last=Lioudis |first=Nick |date=30 April 2023 |title=What Is the Gold Standard? Advantages, Alternatives, and History |url=https://www.investopedia.com/ask/answers/09/gold-standard.asp |access-date=21 September 2023 |website=] |language=en}}</ref>

In some forms of Christianity and Judaism, gold has been associated both with the sacred and evil. In the ], the ] is a symbol of ], while in the ], ] was said to be rich in gold and silver, and Moses was instructed to cover the ] of ] with pure gold. In ] ]ography the ] of Christ, ] and the saints are often golden.<ref>{{cite journal | last1 = Alborn | first1 = Timothy | year = 2017 | title = The Greatest Metaphor Ever Mixed: Gold in the British Bible, 1750–1850 | url = https://academicworks.cuny.edu/le_pubs/184| journal = Journal of the History of Ideas | volume = 78 | issue = 3| pages = 427–447 | doi = 10.1353/jhi.2017.0024 | pmid = 28757488 | s2cid = 27312741 }}</ref>

In ],<ref name="Moors-2013">{{cite journal |last1=Moors |first1=Annelies |title=Wearing gold, owning gold: the multiple meanings of gold jewelry |journal=Etnofoor |date=2013 |volume=25 |issue=1 |pages=78–89 |oclc=858949147|issn=0921-5158}}</ref> gold (along with ])<ref name="Boulanouar-2011">{{cite thesis |last1=Boulanouar |first1=Aisha Wood |url=http://hdl.handle.net/10523/1748|title=Myths and Reality: Meaning in Moroccan Muslim Women's Dress |date=2011 |publisher=University of Otago |hdl=10523/1748 |type=Thesis, Doctor of Philosophy|citeseerx=10.1.1.832.2031 }}</ref><ref name="Poonai-2015">{{cite web |last1=Poonai |first1=Anand |title=Islamic Male Clothing |url=https://eportfolios.macaulay.cuny.edu/whatwewear/men/ |website=Who We Are & What We Wear |access-date=17 June 2020 |date=2015}}</ref> is often cited as being forbidden for men to wear.<ref name="Aziz-2010">{{cite journal |last1=Aziz |first1=Rookhsana |url=http://hdl.handle.net/10500/4888 |title=Hijab – The Islamic Dress Code: Its historical development, evidence from sacred sources and views of selected Muslim scholars |date=November 2010 |publisher=University of South Africa|journal=UNISA EDT (Electronic Theses and Dissertations)|hdl=10500/4888 |type=Thesis, Master of Arts|citeseerx=10.1.1.873.8651 }}</ref> ], quoting a ], said that "he wearing of silk and gold are forbidden on the males of my nation, and they are lawful to their women".<ref name="Toronto-2001">{{cite journal |last1=Toronto |first1=James A. |title=Many Voices, One ''Umma'': Sociopolitical Debate in the Muslim Community |journal=BYU Studies Quarterly |date=1 October 2001 |volume=40 |issue=4 |pages=29–50 |url=https://scholarsarchive.byu.edu/byusq/vol40/iss4/4}}</ref> This, however, has not been enforced consistently throughout history, e.g. in the Ottoman Empire.<ref name="Jirousek-2004">{{cite web |last1=Jirousek |first1=Charlotte |title=Islamic Clothing |url=http://char.txa.cornell.edu/islamicclothes.htm |publisher=Encyclopedia of Islam |access-date=17 June 2020 |date=2004}}</ref> Further, small gold accents on clothing, such as in ], may be permitted.<ref name="Omar-2014">{{cite journal |last1=Omar |first1=Sara |title=Dress |journal=The Encyclopedia of Islam and Law, Oxford Islamic Studies Online |date=28 March 2014 |url=https://www.oxfordislamicstudies.com/article/opr/t349/e0040 }} {{Dead link|date=December 2021 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>

In ] and ], ] was seen as the goddess of gold, silver and other ].<ref>{{cite book | page = | last1 = Daly | last2 = Rengel | title = Greek and Roman Mythology, A to Z | first1 = Kathleen N. | first2 = Marian | publisher = Chelsea House Publishers | date = 1992 | isbn = 978-1-60413-412-4}}</ref>

According to ], those who had something of gold were in possession of something of great value on Earth and a substance to even help souls to paradise.<ref>{{cite book |last=Bernstein |first=Peter L. |url=https://books.google.com/books?id=dIYmHiYhDu8C |title=The Power of Gold: The History of an Obsession |date=2004 |publisher=John Wiley & Sons |isbn=978-0-471-43659-1 |page=1}}</ref>

]s are typically made of gold. It is long lasting and unaffected by the passage of time and may aid in the ring symbolism of eternal vows before God and the perfection the marriage signifies. In ] wedding ceremonies, the wedded couple is adorned with a golden crown (though some opt for wreaths, instead) during the ceremony, an amalgamation of symbolic rites.{{Explain|reason=Is it a single crown and where does the amalgamation come from?|date=September 2023}}

On 24 August 2020, ]i archaeologists discovered a trove of early ]ic gold coins near the central city of ]. Analysis of the extremely rare collection of 425 gold coins indicated that they were from the late 9th century. Dating to around 1,100 years back, the gold coins were from the ].<ref>{{cite web|url=https://apnews.com/5a35414a3fdcdf42c68a274b69595750|title=Israeli dig unearths large trove of early Islamic gold coins|access-date=24 August 2020|website=Associated Press|date=24 August 2020 }}</ref>

== Production ==
{{Main|List of countries by gold production}}
]
According to the ] in 2016, about {{convert|5,726,000,000|ozt|t}} of gold has been accounted for, of which 85% remains in active use.<ref>{{cite report |first1=John L. |last1=Munteen |first2=David A. |last2=Davis |first3=Bridget |last3=Ayling |date=2017 |title=The Nevada Mineral Industry 2016 |url=http://epubs.nsla.nv.gov/statepubs/epubs/210988-2016.pdf |publisher=University of Nevada, Reno |access-date=9 February 2019 |oclc=1061602920 |archive-url=https://web.archive.org/web/20190209232131/http://epubs.nsla.nv.gov/statepubs/epubs/210988-2016.pdf |archive-date=9 February 2019 |url-status=dead }}</ref>

=== Mining and prospecting ===
{{Main|Gold mining|Gold prospecting}}
] gold mine, ]; {{Circa|1938}}.]]
], Indonesia is the world's largest gold mine.]]
Since the 1880s, South Africa has been the source of a large proportion of the world's gold supply, and about 22% of the gold presently accounted is from ]. Production in 1970 accounted for 79% of the world supply, about 1,480 tonnes. In 2007 ] (with 276 tonnes) overtook South Africa as the world's largest gold producer, the first time since 1905 that South Africa had not been the largest.<ref>{{cite web |last=Mandaro |first=Laura |url=http://www.marketwatch.com/story/china-now-worlds-largest-gold-producer-foreign-miners-at-door |title=China now world's largest gold producer; foreign miners at door |website=] |date=17 January 2008 |access-date=5 April 2009}}</ref>

In 2023, ] was the world's leading gold-mining country, followed in order by Russia, Australia, Canada, the United States and Ghana.<ref name="Gold Production-2023"/>
], ].]]

In South America, the controversial project ] aims at exploitation of rich fields in the high mountains of ], at the border between ] and ].

It has been estimated that up to one-quarter of the yearly global gold production originates from artisanal or small scale mining.<ref>{{cite web |url=https://www.iisd.org/publications/global-trends-artisanal-and-small-scale-mining-asm-review-key-numbers-and-issues |last1=Fritz |first1=Morgane |last2=McQuilken |first2=James |last3=Collins |first3=Nina |last4=Weldegiorgis |first4=Fitsum |title=Global Trends in Artisanal and Small-Scale Mining (ASM): A review of key numbers and issues |via=Intergovernmental Forum on Mining, Minerals, Metals and Sustainable Development |format=PDF |type=Report |publisher=International Institute for Sustainable Development |location=Winnipeg Canada |date=January 2018 |access-date=24 February 2021}}</ref><ref>{{cite web |website=reuters.com |url=https://www.reuters.com/article/us-gold-mining-artisanal-explainer/what-is-artisanal-gold-and-why-is-it-booming-idUSKBN1ZE0YU |title=What is artisanal gold and why is it booming? |publisher=] |date=15 January 2020 |access-date=24 February 2021 }}</ref><ref>{{Cite web |title=Removal of Barriers to the Abatement of Global Mercury Pollution from Artisanal Gold Mining |url=http://www.unido.org/fileadmin/import/10644_CHRISTIANtext.3.pdf |last=Beinhoff |first=Christian |access-date=29 December 2014 |url-status=dead |archive-url=https://web.archive.org/web/20160126032505/http://www.unido.org/fileadmin/import/10644_CHRISTIANtext.3.pdf |type=Report |archive-date=26 January 2016}}</ref>

The city of ] located in South Africa was founded as a result of the ] which resulted in the discovery of some of the largest natural gold deposits in recorded history. The gold fields are confined to the northern and north-western edges of the ], which is a {{cvt|5|-|7|km|adj=on}} thick layer of ] rocks located, in most places, deep under the ], ] and surrounding provinces.<ref name="Truswell-1977">Truswell, J.F. (1977). ''The Geological Evolution of South Africa''. pp. 21–28. Purnell, Cape Town. {{ISBN|9780360002906}}</ref> These Witwatersrand rocks are exposed at the surface on the ], in and around Johannesburg, but also in isolated patches to the south-east and south-west of Johannesburg, as well as in an arc around the ] which lies close to the center of the Witwatersrand basin.<ref name="McCarthy-2005" /><ref name="Truswell-1977" /> From these surface exposures the basin ] extensively, requiring some of the mining to occur at depths of nearly {{cvt|4000|m}}, making them, especially the ] and ] mines to the south-west of Johannesburg, the deepest mines on Earth. The gold is found only in six areas where ] rivers from the north and north-west formed extensive pebbly ] deltas before draining into the "Witwatersrand sea" where the rest of the Witwatersrand sediments were deposited.<ref name="Truswell-1977" />

The ] of 1899–1901 between the ] and the ] ]s was at least partly over the rights of miners and possession of the gold wealth in South Africa.

] in the ] in 1898]]
During the 19th century, ]es occurred whenever large gold deposits were discovered. The first documented discovery of gold in the United States was at the ] near Georgeville, North Carolina in 1803.<ref>{{cite web |url=http://www.nchistoricsites.org/Reed/reed.htm |archive-url=https://web.archive.org/web/20120115012324/http://www.nchistoricsites.org/Reed/reed.htm |url-status=dead |archive-date=15 January 2012 |title=Reed Gold Mine State Historic Site |last=Moore |first=Mark A. |date=2006 |publisher=North Carolina Office of Archives and History |access-date=13 December 2008}}</ref> The first major gold strike in the United States occurred in a small north Georgia town called ].<ref>{{cite web |title=Road to adventure |publisher=Georgia Magazine |last=Garvey |first=Jane A. |url=http://www.georgiamagazine.org/archives_view.asp?mon=7&yr=2006&ID=1344 |date=2006 |access-date=23 January 2007 |url-status=dead |archive-url=https://web.archive.org/web/20070302212304/http://www.georgiamagazine.org/archives_view.asp?mon=7&yr=2006&ID=1344 |archive-date=2 March 2007 }}</ref> Further gold rushes occurred in ], ], the ], ] in New Zealand, a number of locations across ], ] in South Africa, and the ] in Canada.

] located in ], ] is the largest ] in the world.<ref>{{cite web|title=Grasberg Open Pit, Indonesia|url=http://www.mining-technology.com/projects/grasbergopenpit|website=Mining Technology|access-date=16 October 2017}}</ref>

=== Extraction and refining ===
{{Main|Gold extraction}}
].]]
] is most economical in large, easily mined deposits. Ore grades as little as 0.5&nbsp;parts per million (ppm) can be economical. Typical ore grades in ] mines are 1–5&nbsp;ppm; ore grades in underground or ] mines are usually at least 3&nbsp;ppm. Because ore grades of 30&nbsp;ppm are usually needed before gold is visible to the naked eye, in most gold mines the gold is invisible.

The average gold mining and extraction costs were about $317 per troy ounce in 2007, but these can vary widely depending on mining type and ore quality; global mine production amounted to 2,471.1 tonnes.<ref>{{Cite news |last=O'Connell |first=Rhona |date=13 April 2007 |title=Gold mine production costs up by 17% in 2006 while output fell |url=http://www.mineweb.net/mineweb/view/mineweb/en/page33?oid=19485&sn=Detail |url-status=dead |archive-url=https://web.archive.org/web/20141006084904/http://www.mineweb.net/mineweb/view/mineweb/en/page33?oid=19485&sn=Detail |archive-date=6 October 2014}}</ref>

After initial production, gold is often subsequently refined industrially by the ] which is based on ] or by the ], that is chlorination in the melt. The Wohlwill process results in higher purity, but is more complex and is only applied in small-scale installations.<ref>{{Cite book |last=Noyes |first=Robert |url=https://books.google.com/books?id=__lqGczo9TwC&pg=PA342 |page=342 |title=Pollution prevention technology handbook |publisher=William Andrew |date=1993 |isbn=978-0-8155-1311-7}}</ref><ref>{{Cite book |last1=Pletcher |first1=Derek |first2=Frank |last2=Walsh |url=https://books.google.com/books?id=E_u9ARrm37oC&pg=PA244 |page=244 |title=Industrial electrochemistry |name-list-style=amp |publisher=Springer |date=1990 |isbn=978-0-412-30410-1}}</ref> Other methods of assaying and purifying smaller amounts of gold include parting and inquartation as well as ], or refining methods based on the dissolution of gold in aqua regia.<ref>{{cite book |last1=Marczenko |first1=Zygmunt |last2=Balcerzak |first2=María |url=https://books.google.com/books?id=0NE1KjVISyAC&pg=PA210 |page=210 |title=Separation, preconcentration, and spectrophotometry in inorganic analysis |name-list-style=amp |publisher=Elsevier |date=2000 |isbn=978-0-444-50524-8}}</ref>

===Recycling===
In 1997, recycled gold accounted for approximately 20% of the 2700 tons of gold supplied to the market.<ref>{{cite book |doi=10.1002/14356007.a12_499 |chapter=Gold, Gold Alloys, and Gold Compounds |title=Ullmann's Encyclopedia of Industrial Chemistry |year=2000 |last1=Renner |first1=Hermann |last2=Schlamp |first2=Günther |last3=Hollmann |first3=Dieter |last4=Lüschow |first4=Hans Martin |last5=Tews |first5=Peter |last6=Rothaut |first6=Josef |last7=Dermann |first7=Klaus |last8=Knödler |first8=Alfons |last9=Hecht |first9=Christian |last10=Schlott |first10=Martin |last11=Drieselmann |first11=Ralf |last12=Peter |first12=Catrin |last13=Schiele |first13=Rainer |isbn=3527306730 }}</ref> Jewelry companies such as Generation Collection and computer companies including ] conduct recycling.<ref>{{cite news|last=Paton|first=Elizabeth|date=23 April 2021|title=Does Recycled Gold Herald a Greener Future for Jewelry?|language=en-US|work=The New York Times|url=https://www.nytimes.com/2021/04/23/fashion/jewelry-recycled-gold.html |archive-url=https://ghostarchive.org/archive/20211228/https://www.nytimes.com/2021/04/23/fashion/jewelry-recycled-gold.html |archive-date=28 December 2021 |url-access=limited|access-date=17 May 2021|issn=0362-4331}}{{cbignore}}</ref>

As of 2020, the amount of ] {{chem2|CO2}} produced in mining a kilogram of gold is 16 tonnes, while recycling a kilogram of gold produces 53 kilograms of {{chem2|CO2}} equivalent. Approximately 30 percent of the global gold supply is recycled and not mined as of 2020.<ref>{{cite news |last=Baraniuk |first=Chris |title=Why it's getting harder to mine gold |url=https://www.bbc.com/future/article/20201026-why-its-getting-harder-to-mine-gold |publisher=] |date=27 October 2020 |access-date=29 October 2020}}</ref>

=== Consumption ===
{{update|date=May 2022}}
{| style=" text-align:right;float:right" class="wikitable sortable"
|+ Gold jewelry consumption by country (in tonnes)<ref>{{cite news |url=http://www.forexyard.com/en/news/Gold-jewellery-consumption-by-country-2011-02-28T130619Z-FACTBOX |archive-url=https://web.archive.org/web/20120112003914/http://www.forexyard.com/en/news/Gold-jewellery-consumption-by-country-2011-02-28T130619Z-FACTBOX |archive-date=12 January 2012 |title=Gold jewellery consumption by country |date=28 February 2011 |agency=Reuters}}</ref><ref>{{cite web |url=http://www.gold.org/investment/research/regular_reports/gold_demand_trends/ |title=Gold Demand Trends &#124; Investment &#124; World Gold Council |publisher=Gold.org |access-date=12 September 2013}}</ref><ref>{{cite web |url=http://www.gold.org/investment/research/regular_reports/gold_demand_trends/ |title=Gold Demand Trends |date=12 November 2015}}</ref>
|- |-
! Country !! 2009 !! 2010 !! 2011 !! 2012 !! 2013
| rowspan="3" valign="center" | ]<br>'''Au'''<br>]<br>&nbsp;<br>&nbsp;
|- |-
| align=left|{{flag|India}} || 442.37 || 745.70 || 986.3 || 864 || 974
| align="center" | ]
<div align="right"><small>]</small></div>
|}
|- |-
| align=left|{{flag|China}} || 376.96 || 428.00 || 921.5 || 817.5 || 1120.1
! colspan="2" align=center bgcolor="#ffc0c0" | '''General'''
|- |-
| align=left|{{flag|United States}} || 150.28 || 128.61 || 199.5 || 161 || 190
| ], ], ]
| Gold, Au, 79
|- |-
| align=left|{{flag|Turkey}} || 75.16 || 74.07 || 143 || 118 || 175.2
| ]
| ]s
|- |-
| align=left|{{flag|Saudi Arabia}} || 77.75 || 72.95 || 69.1 ||58.5 || 72.2
| ], ], ]
| ], ], ]
|- |-
| align=left|{{flag|Russia}} || 60.12 || 67.50 || 76.7 || 81.9 || 73.3
| ], ]
| 19300 ], 2.5
|- |-
| align=left|{{flag|United Arab Emirates}} || 67.60 || 63.37 || 60.9 ||58.1 || 77.1
| ]
| align="center" | Metallic yellow<br>]
|- |-
| align=left|{{flag|Egypt}} || 56.68 || 53.43 || 36 ||47.8 || 57.3
! colspan="2" align="center" bgcolor="#ffc0c0" | '''Atomic properties'''
|- |-
| align=left|{{flag|Indonesia}} || 41.00 || 32.75 || 55 || 52.3 || 68
| ]
| 196.96655 ]
|- |-
| align=left|{{flag|United Kingdom}} || 31.75 || 27.35 || 22.6 || 21.1 || 23.4
| ] (calc.)
| 135 (174) ]
|- |-
| align=left|Other Persian Gulf Countries || 24.10 || 21.97 || 22 || 19.9 || 24.6
| ]
| 144 pm
|- |-
| align=left|{{flag|Japan}} || 21.85 || 18.50 || −30.1 || 7.6 || 21.3
| ]
| 166 pm
|- |-
| align=left|{{flag|South Korea}} || 18.83 || 15.87 || 15.5 ||12.1 || 17.5
| ]
| <nowiki>]<nowiki>]
</nowiki>4]<sup>14</sup> 5d<sup>10</sup> 6]<sup>1</sup>
|- |-
| align=left|{{flag|Vietnam}} || 15.08 || 14.36 || 100.8 || 77 || 92.2
| ] 's per ]
| 2, 8, 18, 32, 18, 1
|- |-
| align=left|{{flag|Thailand}} || 7.33 || 6.28 || 107.4 || 80.9 || 140.1
| ]s (])
| '''3''', 1 (])
|- |-
| align=left|'''Total''' || '''1466.86''' || '''1770.71''' || '''2786.12 ''' || '''2477.7''' || '''3126.1 '''
| ]
| Cubic face centered
|- |-
| align=left|''Other Countries'' || ''251.6'' || ''254.0'' || ''390.4'' || ''393.5'' || ''450.7''
! colspan="2" align="center" bgcolor="#ffc0c0" | '''Physical properties'''
|- |-
| align=left|'''World Total''' || '''1718.46''' || '''2024.71''' || '''3176.52'''|| '''2871.2''' || '''3576.8'''
| ]
| Solid
|-
| ]
| 1337.33 ] (1947.52 °])
|-
| ]
| 3129 K (5173 °F)
|-
| ]
| 10.21 ]
|-
| ]
| 334.4 ]
|-
| ]
| 12.55 kJ/mol
|-
| ]
| 237 ] at 1337 K
|-
| ]
| 1740 ] at 20 °C
|-
! colspan="2" align="center" bgcolor="#ffc0c0" | '''Miscellaneous'''
|-
| ]
| 2.54 (])
|-
| ]
| 128 ]
|-
| ]
| 45.2 ]/m
|-
| ]
| 317 ]
|-
| 1<sup>st</sup> ]
| 890.1 kJ/mol
|-
| 2<sup>nd</sup> ionization potential
| 1980 kJ/mol
|-
! colspan="2" align="center" bgcolor="#ffc0c0" | '''Most stable isotopes'''
|-
| colspan="2" |
{| border="1" cellspacing="0" cellpadding="2" width="100%"
|]
|]
|]
|]
|] fJ
|]
|-
| <sup>195</sup>Au
| ]
| 186.10 d
| ]
| 0.227
| ]
|-
| <sup>196</sup>Au
| ]
| 6.183 d
| ] <br> ]<sup>-</sup>
| 1.506 <br> 0.686
| ] <br> ]
|-
| <sup>197</sup>Au || '''100 %'''
| colspan="4" | Au is ] with 118 ]s
|-
| <sup>198</sup>Au
| ]
| 2.69517 d
| ]<sup>-</sup>
| 1.372
| ]
|-
| <sup>199</sup>Au
| ]
| 3.169 d
| ]<sup>-</sup>
| 0.453
| ]
|}
|-
! colspan="2" align="center" bgcolor="#ffc0c0" | <font size="-1">] units & ] are used except where noted.</font>
|} |}
The consumption of gold produced in the world is about 50% in jewelry, 40% in investments, and 10% in industry.<ref name="Soos-2011" /><ref>{{cite web |url=http://www.usdebtclock.org/gold-demand-by-country.html |title=Country wise gold demand |access-date=2 October 2015}}</ref>


According to the ], China was the world's largest single consumer of gold in 2013, overtaking India.<ref>{{cite web |last=Harjani |first=Ansuya |url=https://www.cnbc.com/2014/02/18/its-official-china-overtakes-india-as-top-consumer-of-gold.html |title=It's official: China overtakes India as top consumer of gold |publisher=] |date=18 February 2014 |access-date=2 July 2014}}</ref>
'''Gold''' is a ] in the ] that has the symbol '''Au''' (] '''''aurum''''') and ] 79. A soft, shiny, yellow, heavy, malleable, ductile (trivalent and univalent) ], gold does not react with most chemicals but is attacked by ], ] and ]. The metal occurs as ] or grains in rocks and in ]s and is one of the ]s.


=== Pollution ===
Gold is used as a ] for many nations and is also used in ], ], and in ]. Its ] is '''XAU'''.
{{further|Mercury cycle|International Cyanide Management Code}}
Gold production is associated with contribution to hazardous ].<ref>{{cite journal |last2=Marikar |first2=Fouzul |last1=Abdul-Wahab |title=The environmental impact of gold mines: pollution by heavy metals |journal=Central European Journal of Engineering |volume=2 |issue=2 |pages=304–313 |date=24 October 2011 |bibcode=2012CEJE....2..304A|s2cid=3916088 |doi=10.2478/s13531-011-0052-3|doi-access=free }}</ref>


Low-grade gold ore may contain less than one ] gold metal; such ore is ] and mixed with ] to dissolve the gold. Cyanide is a highly poisonous chemical, which can kill living creatures when exposed in minute quantities. Many ]<ref> {{webarchive |url=https://web.archive.org/web/20180714135300/https://www.deseretnews.com/article/810435/Cyanide-spill-compared-to-Chernobyls---N-disaster.html |date=14 July 2018}}. Deseretnews.com (14 February 2000). Retrieved on 4 May 2012.</ref> from gold mines have occurred in both developed and developing countries which killed aquatic life in long stretches of affected rivers. Environmentalists consider these events major environmental disasters.<ref> {{Webarchive|url=https://web.archive.org/web/20090109134649/http://news.bbc.co.uk/2/hi/europe/642880.stm |date=9 January 2009 }}. BBC News (15 February 2000). Retrieved on 4 May 2012.</ref><ref> {{Webarchive|url=https://web.archive.org/web/20170525072149/http://www.abc.net.au/am/stories/s98890.htm |date=25 May 2017 }}. Abc.net.au. 11 February 2000. Retrieved on 4 May 2012.</ref> Up to thirty tons of used ore can be dumped as waste for producing one troy ounce of gold.<ref name="NYT-2005"> {{Webarchive|url=https://web.archive.org/web/20150408113857/http://www.nytimes.com/2005/10/24/international/24GOLD.html |date=8 April 2015 }}, ''The New York Times'', 24 October 2005</ref> Gold ore dumps are the source of many heavy elements such as cadmium, lead, zinc, copper, ], ] and mercury. When sulfide-bearing minerals in these ore dumps are exposed to air and water, the sulfide transforms into ] which in turn dissolves these heavy metals facilitating their passage into surface water and ground water. This process is called ]. These gold ore dumps contain long-term, highly ].<ref name="NYT-2005" />
== Notable characteristics ==
Gold is a metallic element that exhibits a yellow color ''en masse'' but can be black, ruby, or purple when finely divided. It is the most ] and ] ] known. In fact, 1 gram can be beaten into a 1 meter&sup2; sheet, or 1 ounce into 300 feet&sup2;. A soft metal, gold is often ]ed with other metals to give it more strength. It is one of only three metals which have an actual easily-identifiable color; the other two are ], which is red, and ], which has a gold color.


It was once common to use mercury to recover gold from ore, but today the use of mercury is largely limited to small-scale individual miners.<ref>{{cite web |url=http://www.worstpolluted.org/files/FileUpload/files/WWPP_2012.pdf |archive-url=https://web.archive.org/web/20150402130613/http://www.worstpolluted.org/files/FileUpload/files/WWPP_2012.pdf |archive-date=2 April 2015 |url-status=live |title=Pollution from Artisanal Gold Mining, Blacksmith Institute Report 2012 |access-date=22 September 2015}}</ref> Minute quantities of mercury compounds can reach water bodies, causing heavy metal contamination. Mercury can then enter into the human food chain in the form of ]. ] in humans causes incurable brain function damage and severe retardation.<ref>{{cite web|last=Wroblewski|first=William|date=12 January 2022|title='Babies here are born sick': are Bolivia's gold mines poisoning its indigenous people?|url=https://www.theguardian.com/global-development/2022/jan/12/babies-here-are-born-sick-are-bolivias-gold-mines-poisoning-its-indigenous-people|access-date=12 January 2022|website=The Guardian|language=en}}</ref>
Gold is also a good conductor of heat and electricity and is not affected by air and most reagents. It is quite chemically unalterable by heat, moisture, ], and most ] agents and therefore is well-suited for its use in ] and ]. ]s chemically attack gold and ] dissolves it.


Gold extraction is also a highly energy-intensive industry, extracting ore from deep mines and grinding the large quantity of ore for further chemical extraction requires nearly 25 ] of electricity per gram of gold produced.<ref>{{cite journal |doi=10.1016/j.jclepro.2012.01.042 |title=Using life cycle assessment to evaluate some environmental impacts of gold |date=2012 |last1=Norgate |first1=Terry |last2=Haque |first2=Nawshad |journal=Journal of Cleaner Production |volume=29–30 |pages=53–63}}</ref>
The color of solid gold as well as of the intensely colored, often purple, ]al solutions that can be made from it is caused by the fact that the ] of this element lies in the visible range, which causes red and yellow light to be reflected and blue light to be absorbed. Native gold contains usually eight to ten per cent ], but often much more. Natural alloys with a high silver content (more than 20%) are called ]. As the amount of silver increases, the color becomes whiter and the ] lower.


== Monetary use ==
Gold will alloy with many other metals; alloys with ] yield a redder metal, alloys with ] are green, ] alloys are purple, alloys with ] metals produce white, natural ] with silver alloys produce black. Jewelry made with combinations of colored gold is sold in the western ] to the tourist trade as ] gold.
{{Further|History of money}}
], which was based on a ]. The coin to the left is ] and the right one is ].]]
Gold has been ] throughout the world as ],<ref>{{Cite book |url=https://books.google.com/books?id=Hx-AU99lho4C&pg=PA192 |title=Man, Economy, and State, Scholar's Edition |last=Rothbard |first=Murray N. |date=2009 |publisher=Ludwig von Mises Institute |isbn=978-1-933550-99-2}}</ref> for efficient indirect exchange (versus ]), and to store wealth in ]s. For exchange purposes, ] produce standardized ] ], ] and ] of fixed weight and purity.


The first known coins containing gold were struck in Lydia, Asia Minor, around 600 BC.<ref name="Lion-2003">{{cite web |url=http://rg.ancients.info/lion/article.html |title=A Case for the World's Oldest Coin: Lydian Lion |publisher=Rg.ancients.info |date=2 October 2003 |access-date=27 October 2013}}</ref> The '']'' coin of gold in use during the periods of Grecian history both before and during the time of the life of Homer weighed between 8.42 and 8.75&nbsp;grams.<ref>{{cite book |last=Seltman |first=C. T. |url=https://books.google.com/books?id=Uas8AAAAIAAJ&pg=PA116 |title=Athens, Its History and Coinage Before the Persian Invasion |access-date=4 June 2012 |isbn=978-0-87184-308-1 |date=1924}}</ref> From an earlier preference in using silver, European economies re-established the minting of gold as coinage during the thirteenth and fourteenth centuries.<ref name="Postan-1967">{{cite book |last1=Postan |first1=M. M. |last2=Miller |first2=E. |url=https://books.google.com/books?id=wSia_4PpeqQC&pg=PR1 |title=The Cambridge Economic History of Europe: Trade and industry in the Middle Ages |publisher=Cambridge University Press, 28 August 1987 |isbn=978-0-521-08709-4 |date=1967}}</ref>
Common ]s of gold include +1 (gold(I) or aurous compounds) and +3 (gold(III) or auric compounds). Gold ions in solution are readily ] and ] out as gold metal by the addition of virtually any other metal as the reducing agent. The added metal is ] and dissolves allowing the gold to be displaced from solution and be recovered as a solid precipitate.


] (that mature into gold coin) and ] (convertible into gold coin at the issuing bank) added to the circulating stock of ] money in most 19th century industrial economies. In preparation for ] the warring nations moved to fractional gold standards, inflating their currencies to finance the war effort. Post-war, the victorious countries, most notably Britain, gradually restored gold-convertibility, but international flows of gold via bills of exchange remained embargoed; international shipments were made exclusively for bilateral trades or to pay war reparations.
== Applications==
Pure gold is too soft for ordinary use and is hardened by ]ing with silver, copper, and other metals. Gold and its many alloys are most often used in ], ] and as a standard for ] exchange in many countries. Because of its superior electrical conductivity and resistance to corrosion and other desirable combinations of physical and chemical properties, gold also emerged in the late ] as an essential industrial metal.


After ] gold was replaced by a system of nominally ] related by fixed exchange rates following the ]. ]s and the direct convertibility of currencies to gold have been abandoned by world governments, led in 1971 by the United States' refusal to redeem its dollars in gold. ] now fills most monetary roles. ] was the last country to tie its currency to gold; this was ended by a referendum in 1999.<ref>{{cite news |url=https://www.nytimes.com/1999/04/19/world/swiss-narrowly-vote-to-drop-gold-standard.html |work=The New York Times |title=Swiss Narrowly Vote to Drop Gold Standard |date=19 April 1999 |access-date=1 July 2022}}</ref>
Other uses:
*Gold can be made into thread and used in ].
*Gold performs critical functions in ]s, communications equipment, ], ] engines, and a host of other products.
*The high electrical conductivity and resistance to oxidation of gold has led to its widespread use as thin layers ] on the surface of electrical connectors to ensure a good, low-resistance connection.
*Gold is used in restorative dentistry especially in tooth restorations such as ] and ].
*] (a gold ]) is an intensely ]ed solution that is currently studied in many labs for medical, biological and other applications. It is also the form used as gold paint on ]s prior to firing.
*] is used in ] for toning the silver image.
*] is a treatment for rheumatoid ] (administered intramuscularly).
*The gold isotope Au-198, (]: 2.7 days) is used in some ] treatments and for treating other diseases.
* Gold is used as a coating enabling biological material to be viewed under a ].
* Many competitions and honors, such as the ] and the ], award a gold ] to the winner (with ] to the second-place finisher, and ] to the third.)
*Since it is a good reflector of both infrared and visible light, it is used for the protective coatings on many artificial ]s.
*Gold flake is used on and in some gourmet sweets and drinks. Having no reactivity it adds no taste but is taken as a delicacy.
*] (an alloy of gold with ], ], ], and/or ]) serves as a substitute for platinum.
*] (a gold/] alloy) is used in specialized jewelry while gold alloys with copper (reddish color) are more widely used for that purpose.


] at the ]]]
== History ==
Central banks continue to keep a portion of their liquid reserves as gold in some form, and metals exchanges such as the ] still clear transactions denominated in gold, including future delivery contracts. Today, ] output is declining.<ref>{{cite web |last=King |first=Byron |url=http://goldnews.bullionvault.com/gold_mine_production_072020092 |archive-url=http://arquivo.pt/wayback/20160515213855/http://goldnews.bullionvault.com/gold_mine_production_072020092 |archive-date=15 May 2016 |title=Gold mining decline |publisher=BullionVault.com |date=20 July 2009 |access-date=23 November 2009}}</ref> With the sharp growth of economies in the 20th century, and increasing foreign exchange, the world's ]s and their trading market have become a small fraction of all markets and fixed exchange rates of currencies to gold have been replaced by floating prices for gold and gold ]. Though the gold stock grows by only 1% or 2% per year, very little metal is irretrievably consumed. Inventory above ground would satisfy many decades of industrial and even artisan uses at current prices.
]
Gold (] ''jval'', ] &chi;&rho;&upsilon;&sigma;&omicron;&sigmaf; , ] ''aurum'' for "shining dawn", ] ''gold'', ] &#37329; ) has been known and highly valued since prehistoric times. It may have been the first metal used by ]s and was valued for ornamentation and rituals. ]s from as early as ] describe gold, whose king ] of the ] claimed was as "common as dust" in Egypt. Egypt and ] had the resources to make them major gold-producing areas for much of history. Gold is also mentioned several times in the ]. The south-east corner of the ] was famed for its gold. Exploitation is said to date from the time of ], and this gold was important in the establishment of what is probably the world's earliest coinage in ] between ].


The gold proportion (]) of alloys is measured by ] (k). Pure gold (commercially termed ''fine'' gold) is designated as 24 karat, abbreviated 24k. English gold coins intended for circulation from 1526 into the 1930s were typically a standard 22k alloy called ],<ref>{{cite book |last1=Lawrence |first1=Thomas Edward |url=https://books.google.com/books?id=tu86AAAAIAAJ&pg=PA103 |page=103 |title=The Mint: A Day-book of the R.A.F. Depot Between August and December 1922, with Later Notes |date=1948}}</ref> for hardness (American gold coins for circulation after 1837 contain an alloy of 0.900 fine gold, or 21.6 kt).<ref>{{cite book |last=Tucker |first=George |url=https://archive.org/details/theorymoneyandb00tuckgoog |title=The theory of money and banks investigated |publisher=C. C. Little and J. Brown |date=1839}}</ref>
The European exploration of the Americas was fueled in no small part by reports of the gold ornaments displayed in great profusion by ] peoples, especially in ], ], and ].


Gold has long been considered one of the most ]s, and its value has been used as the standard for many ] (known as the ]) in history. Gold has been used as a symbol for purity, value, royalty, and particularly roles that combine these properties (see ]). Although the prices of some ] group metals can be much higher, gold has long been considered the most desirable of ]s, and its value has been used as the standard for many ]. Gold has been used as a symbol for purity, value, royalty, and particularly roles that combine these properties. Gold as a sign of wealth and prestige was ridiculed by ] in his treatise '']''. On that imaginary island, gold is so abundant that it is used to make chains for slaves, tableware, and lavatory seats. When ambassadors from other countries arrive, dressed in ostentatious gold jewels and badges, the Utopians mistake them for menial servants, paying homage instead to the most modestly dressed of their party.


The ] currency code of gold is XAU.<ref>{{cite web |url=http://www.iso.org/iso/home/standards/currency_codes.htm |title=Currency codes – ISO 4217 |publisher=International Organization for Standardization |access-date=25 December 2014}}</ref> Many holders of gold store it in form of ] coins or ] as a hedge against ] or other economic disruptions, though its efficacy as such has been questioned; historically, it has not proven itself reliable as a hedging instrument.<ref>{{Cite web |url=https://medium.com/hedgehound/hedgehound-fridayfinance-on-hedging-inflation-with-gold-375f3ce09cfe |title=On hedging inflation with gold |last=Valenta |first=Philip |date=22 June 2018 |website=Medium|access-date=30 November 2018}}</ref> Modern ]s for investment or collector purposes do not require good mechanical wear properties; they are typically fine gold at 24k, although the ] and the British ] continue to be minted in 22k (0.92) metal in historical tradition, and the South African ], first released in 1967, is also 22k (0.92).<ref>{{cite web |url=http://www.americansilvereagletoday.com/the-ever-popular-krugerrand |archive-url=https://web.archive.org/web/20110203024339/http://www.americansilvereagletoday.com/the-ever-popular-krugerrand/ |archive-date=3 February 2011 |title=The Ever Popular Krugerrand |date=2010 |website=americansilvereagletoday.com |access-date=30 August 2011}}</ref>
Gold in antiquity was relatively easy to obtain geologically however 75% of all gold ever produced has been extracted since ]. It has been estimated that all the gold in the world that has ever been refined would form a single cube ] (66 ft) a side.


The ''special issue'' ] coin contains the highest purity gold of any ], at 99.999% or 0.99999, while the ''popular issue'' Canadian Gold Maple Leaf coin has a purity of 99.99%. In 2006, the ] began producing the ] gold bullion coin with a purity of 99.99%. The ]n Gold Kangaroos were first coined in 1986 as the ] but changed the reverse design in 1989. Other modern coins include the ]n ] bullion coin and the ].<ref>{{cite web |url=https://goldsilver.com/blog/what-are-the-different-purities-of-sovereign-gold-coins/ |title=What Are the Different Purities of Sovereign Gold Coins? |website=goldsilver.com |access-date=29 March 2021}}</ref>
]
The primary goal of the ] was to produce gold from other substances, such as ] &mdash; presumably by the interaction with a mythical substance called the ]. Although they never succeeded in this attempt, the alchemists promoted an interest in what can be done with substances, and this laid a foundation for today's ]. Their symbol for gold was the ] (&#x2609;), which was also the ] symbol, the ]ian ] and the ancient ] for the ] (now &#26085;). For modern attempts to produce artificial gold, see ].


=== Price ===
During the ] ]es occurred whenever large gold deposits were discovered, including the ], ], ], ], ], ], and ] gold rushes.
{{further|Gold as an investment}}
]


Like other precious metals, gold is measured by ] and by grams. The proportion of gold in the alloy is measured by '']'' (k), with 24 karat (24k) being pure gold (100%), and lower karat numbers proportionally less (18k = 75%). The purity of a ] or coin can also be expressed as a decimal figure ranging from 0 to 1, known as the ], such as 0.995 being nearly pure.
Because of its historically high value, much of the gold mined throughout history is still in circulation in one form or another.


The price of gold is determined through trading in the gold and ] markets, but a procedure known as the ] in ], originating in September 1919, provides a daily benchmark price to the industry. The afternoon fixing was introduced in 1968 to provide a price when US markets are open.<ref>{{cite book |last1=Warwick-Ching |first1=Tony |url=https://books.google.com/books?id=GrQQxVrtJ3sC&pg=PA26 |page=26 |title=The International Gold Trade |isbn=978-1-85573-072-4 |date=28 February 1993|publisher=Woodhead }}</ref> {{as of|2017|September|}}, gold was valued at around $42 per gram ($1,300 per troy ounce).
== Value ==
], form the base of many monetary systems.]]


==== History ====
Like other precious metals, gold is measured by ] and by ]s. When it is alloyed with other metals the term '']'' or ''karat'' is used to indicate the amount of gold present, with 24 carats being pure gold and lower ratings proportionally less. The purity of a gold bar can also be expressed as a decimal figure ranging from 0 to 1, known as the ], such as 0.995.
Historically gold ] was widely used as currency; when ] was introduced, it typically was a ] redeemable for gold coin or ]. In a ] system known as the ], a certain ] of gold was given the name of a unit of currency. For a long period, the United States government set the value of the US dollar so that one ] was equal to $20.67 ($0.665 per gram), but in 1934 the dollar was devalued to $35.00 per troy ounce ($0.889/g). By 1961, it was becoming hard to maintain this price, and ] agreed to manipulate the market to prevent further ] against increased gold demand.<ref>{{cite book |last1=Elwell |url=https://books.google.com/books?id=ztHyT2ew3QUC&pg=PA11 |pages=11–13 |title=Brief History of the Gold Standard (GS) in the United States |isbn=978-1-4379-8889-5 |first1=Craig K. |date=2011| publisher=DIANE }}</ref>


The largest gold depository in the world is that of the ] in ], which holds about 3%<ref name="Hitzer-2006">{{cite web |first2=Christian |last2=Perwass |url=http://sinai.apphy.u-fukui.ac.jp/gcj/publications/gold/gold.pdf |archive-url=https://web.archive.org/web/20120127152357/http://sinai.apphy.u-fukui.ac.jp/gcj/publications/gold/gold.pdf |archive-date=27 January 2012 |title=The hidden beauty of gold |access-date=10 May 2011 |last1=Hitzer |first1=Eckhard |date=22 November 2006 |website=Proceedings of the International Symposium on Advanced Mechanical and Power Engineering 2007 (ISAMPE 2007) between Pukyong National University (Korea), University of Fukui (Japan) and University of Shanghai for Science and Technology (China), 22–25 November 2006, hosted by the University of Fukui (Japan), pp. 157–167. (Figs 15,16,17,23 revised.)}}</ref> of the gold known to exist and accounted for today, as does the similarly laden ] at ]. In 2005 the ] estimated total global gold supply to be 3,859 tonnes and demand to be 3,754 tonnes, giving a surplus of 105 tonnes.<ref>{{cite web |url=http://www.gold.org/value/stats/statistics/gold_demand/index.html |archive-url=https://web.archive.org/web/20060719111349/http://www.gold.org/value/stats/statistics/gold_demand/index.html |archive-date=19 July 2006 |title=World Gold Council > value > research & statistics > statistics > supply and demand statistics |access-date=22 July 2006}}</ref>
The price of gold is determined on the open market, but a procedure known as the ] in ], originating in 1919, provides a twice-daily benchmark figure to the industry.


After 15 August 1971 ], the price began to greatly increase,<ref>{{cite web |publisher=kitco |url=http://www.kitco.com/charts/historicalgold.html |title=historical charts:gold – 1833–1999 yearly averages |access-date=30 June 2012}}</ref> and between 1968 and 2000 the price of gold ranged widely, from a high of $850 per troy ounce ($27.33/g) on 21 January 1980, to a low of $252.90 per troy ounce ($8.13/g) on 21 June 1999 (London Gold Fixing).<ref> {{Webarchive|url=https://web.archive.org/web/20180714081628/http://www.kitco.com/LFgif/au75-pres.gif |date=14 July 2018 }}, Gold&nbsp;– London PM Fix 1975&nbsp;– present (GIF), Retrieved 22 July 2006.</ref> Prices increased rapidly from 2001, but the 1980 high was not exceeded until 3 January 2008, when a new maximum of $865.35 per ] was set.<ref name="Lbma-2008">{{cite web |url=http://www.lbma.org.uk/2008dailygold.htm |archive-url=https://web.archive.org/web/20090210035134/http://lbma.org.uk/2008dailygold.htm |archive-date=10 February 2009 |title=LBMA statistics |publisher=Lbma.org.uk |date=31 December 2008 |access-date=5 April 2009}}</ref> Another record price was set on 17 March 2008, at $1023.50 per troy ounce ($32.91/g).<ref name="Lbma-2008" />
Historically gold was used to back currency in an economic system known as the ] in which one unit of currency was equivalent to a certain ] of gold. As part of this system, governments and ]s attempted to control the price of gold by setting values at which they would exchange it for currency. For a long period the United States government set the price of gold at $20.67 per ] ($664.56/kg) but in ] the price of gold was set at $35.00 per troy ounce ($1125.27/kg). By 1961 it was becoming hard to maintain this price, and a pool of US and European banks began to act together to defend the price against market forces.


On 2 December 2009, gold reached a new high closing at $1,217.23.<ref>{{cite news |url=http://news.bbc.co.uk/2/hi/business/8390779.stm |title=Gold hits yet another record high |work=BBC News |date=2 December 2009 |access-date=6 December 2009}}</ref> Gold further rallied hitting new highs in May 2010 after the European Union debt crisis prompted further purchase of gold as a safe asset.<ref>{{Cite news |title=PRECIOUS METALS: Comex Gold Hits All-Time High |newspaper=] |date=11 May 2012 |url=https://www.wsj.com/article/BT-CO-20100511-717954.html |access-date=4 August 2010}} {{dead link|date=June 2016|bot=medic}}{{cbignore|bot=medic}}</ref><ref>{{cite web |url=http://www.marketwatch.com/story/gold-prices-resume-rise-as-eu-plan-pondered-2010-05-11 |title=Gold futures hit closing record as investors fret rescue deal |last1=Gibson |first1=Kate |last2=Chang |first2=Sue |date=11 May 2010 |website=] |access-date=4 August 2010}}</ref> On 1 March 2011, gold hit a new all-time high of $1432.57, based on ] concerns regarding ongoing ] in ] as well as in the ].<ref>{{cite news |url=https://www.reuters.com/article/markets-global-idUSN0115419520110301 |title=Gold hits record, oil jumps with Libya unrest |work=Reuters |date=1 March 2011 |access-date=1 March 2011 |first=Caroline |last=Valetkevitch |archive-date=15 October 2015 |archive-url=https://web.archive.org/web/20151015231151/http://www.reuters.com/article/2011/03/01/markets-global-idUSN0115419520110301 |url-status=live }}</ref>
On ] ], economic circumstances caused the collapse of the gold pool, and a two-tiered pricing scheme was established whereby gold was still used to settle international accounts at the old $35.00 per troy ounce ($1.13/g) but the price of gold on the private market was allowed to fluctuate; this two-tiered pricing system was abandoned in 1975 when the price of gold was left to find its free-market level. Central banks still hold historical ] as a ] asset although the level has generally been declining. The largest gold depository in the world is the ].


From April 2001 to August 2011, spot gold prices more than quintupled in value against the US dollar, hitting a new all-time high of $1,913.50 on 23 August 2011,<ref>{{cite news |url=https://www.bloomberg.com/news/2011-08-25/cash-gold-may-advance-after-dropping-most-in-18-months-as-shares-rebound.html |title=Gold Extends Biggest Decline in 18 Months After CME Raises Futures Margins |publisher=Bloomberg |date=23 August 2011 |access-date=24 February 2021 |first=Glenys |last=Sim |url-status=live |archive-url=https://web.archive.org/web/20140110002029/http://www.bloomberg.com/news/2011-08-25/cash-gold-may-advance-after-dropping-most-in-18-months-as-shares-rebound.html |archive-date=10 January 2014}}</ref> prompting speculation that the long ] had ended and a ] had returned.<ref>{{cite web |url=http://www.ameinfo.com/75511.html |archive-url=https://web.archive.org/web/20090421094351/http://www.ameinfo.com/75511.html |archive-date=21 April 2009 |title=Financial Planning{{!}}Gold starts 2006 well, but this is not a 25-year high! |publisher=Ameinfo.com|access-date=5 April 2009}}</ref> However, the price then began a slow decline towards $1200 per troy ounce in late 2014 and 2015.
Since 1968 the price of gold on the open market has ranged widely, with a record high of $850/oz ($27,300/kg) on ] ], to a low of $252.90/oz ($8,131/kg) on ] ] (London Fixing). Prices have risen to the $420/oz ($13,500/kg) mark in 2004, due to a depreciation of the US dollar (an inverse relation between the prices exists to a certain extent). The price of gold has remained relatively constant in currencies not tied to the US dollar; for example, it has not varied by more than 10% from ]330/oz (&euro;10,600/kg) or ]560/oz (A$18,000/kg) during this time.


In August 2020, the gold price picked up to US$2060 per ounce after a total growth of 59% from August 2018 to October 2020, a period during which it outplaced the Nasdaq total return of 54%.<ref>{{cite web|url=https://www.efgbank.com/it/coronavirus/14-October-2020.html|date=14 October 2020 |title=Gold, monetary policy and the US dollar|first=GianLuigi |last=Mandruzzato|url-status=dead|archive-url=https://web.archive.org/web/20201106083115/https://www.efgbank.com/it/coronavirus/14-October-2020.html|archive-date=6 November 2020 }}</ref>
Because of its use as a reserve store of value, the possession of gold is sometimes restricted or banned. Within the United States, the private possession of gold except as jewelry and coin collecting was banned between 1933 and 1975. President ] confiscated gold by , and President ] closed the gold window by which foreign countries could exchange American dollars for gold at a fixed rate.


Gold futures are traded on the COMEX exchange.<ref name="PortaraCQG">{{Cite web |title=Historical Gold Intraday Futures Data (GCA) |url=https://portaracqg.com/historical-futures-data/gold-intraday-data-gca/ |access-date=28 April 2022 |website=PortaraCQG |language=en-US}}</ref> These contacts are priced in USD per troy ounce (1 troy ounce = 31.1034768 grams).<ref>{{Cite web |title=Troy Ounce |url=https://www.investopedia.com/terms/t/troyounce.asp |access-date=28 April 2022 |website=Investopedia |language=en}}</ref> Below are the ] contract specifications outlining the futures contracts:
In the first few years of the ], reports started to circulate that ] was planning a return to the ] -- to issue and use gold ]s as currency in international trade. The purported purpose of this move would be to reduce dependence on the ] as a reserve currency, and to establish a non-debt-backed currency in accord with ] against the charging of interest. Nonetheless, gold dinar currency has not yet emerged.
{| class="wikitable"
|+Contract Specifications<ref name="PortaraCQG" />
!Gold (GCA)
!
|-
|Exchange:
|COMEX
|-
|Sector:
|Metal
|-
|Tick Size:
|0.1
|-
|Tick Value:
|10 USD
|-
|BPV:
|100
|-
|Denomination:
|USD
|-
|Decimal Place:
|1
|}


== Other applications ==
As a ] gold is sometimes held as part of a portfolio because over the long term gold has an extensive history of maintaining its value. It has in the last century gained ground in relation to fiat currencies owing to ]. Speculating in gold, attempting to buy low and sell high, carries large transaction costs. However, gold does become particularly desirable in times of extremely weak confidence and during ] because gold maintains its value even as ] becomes worthless. People who, despite the risks, enjoy investing in gold are known as goldbugs.
=== Jewelry ===
] gold necklace depicting feline heads. ] Collection, ].]]
] so-called "]" (Geneva ball), {{Circa|1890}}.]]
Because of the softness of pure (24k) gold, it is usually ]ed with other metals for use in jewelry, altering its hardness and ductility, melting point, color and other properties. Alloys with lower ], typically 22k, 18k, 14k or 10k, contain higher percentages of copper, silver, palladium or other base metals in the alloy.<ref name="WorldGoldCouncil">. World Gold Council</ref><!--Is there a better ref?--> Nickel is toxic, and its release from nickel white gold is controlled by legislation in Europe.<ref name="WorldGoldCouncil" /> Palladium-gold alloys are more expensive than those using nickel.<ref>{{Cite book |url=https://books.google.com/books?id=W_hTAAAAMAAJ |title=Professional goldsmithing: a contemporary guide to traditional jewelry techniques |last=Revere |first=Alan |date=1 May 1991 |publisher=Van Nostrand Reinhold |isbn=978-0-442-23898-8}}</ref> High-karat white gold alloys are more resistant to corrosion than are either pure silver or ]. The Japanese craft of ] exploits the color contrasts between laminated colored gold alloys to produce decorative wood-grain effects.


By 2014, the gold jewelry industry was escalating despite a dip in gold prices. Demand in the first quarter of 2014 pushed turnover to $23.7 billion according to a ] report.
]s based on gold currently trade on various exchanges around the world. In the US this occurs primarily on ] (Commodity Exchange) which is a subsidiary of the ]. Speculation about the future price of gold and other commodities is carried on at COMEX.


Gold ] is used for joining the components of gold jewelry by high-temperature hard soldering or ]. If the work is to be of ]ing quality, the gold solder alloy must match the fineness of the work, and alloy formulas are manufactured to color-match yellow and white gold. Gold solder is usually made in at least three melting-point ranges referred to as Easy, Medium and Hard. By using the hard, high-melting point solder first, followed by solders with progressively lower melting points, goldsmiths can assemble complex items with several separate soldered joints. Gold can also be made into ] and used in ].
== Occurrence ==
] formations]]
Due to its relative chemical inertness gold is usually found as the native metal or alloy. Occasionally large accumulations of native gold (also known as ]) occur but usually gold occurs as minute grains. These grains occur between mineral grain boundries or as inclusions within minerals. Common gold associations are ] often as ]s and sulfide minerals. The most common sulfide associations are ], ], ], ], ], ] and ]. Rarer mineral associations are ], ], ], ], ] and ].


=== Electronics ===
Gold is widely distributed in the earth's ] at a background level of 0.03 ]/1000 ] (0.03 ]). ] ] deposits of gold occur in ]s and ]s; ]s and ]s originate from these sources.
Only 10% of the world consumption of new gold produced goes to industry,<ref name="Soos-2011" /> but by far the most important industrial use for new gold is in fabrication of corrosion-free ] in computers and other electrical devices. For example, according to the World Gold Council, a typical cell phone may contain 50&nbsp;mg of gold, worth about three dollars. But since nearly one billion cell phones are produced each year, a gold value of US$2.82 in each phone adds to US$2.82 billion in gold from just this application.<ref> {{Webarchive|url=https://archive.today/20141104233515/http://www.usfunds.com/slideshows/the-many-uses-of-gold/ |date=4 November 2014 }} Accessed 4 November 2014</ref> (Prices updated to November 2022)


Though gold is attacked by free chlorine, its good conductivity and general resistance to oxidation and corrosion in other environments (including resistance to non-chlorinated acids) has led to its widespread industrial use in the electronic era as a thin-layer coating on ]s, thereby ensuring good connection. For example, gold is used in the connectors of the more expensive electronics cables, such as audio, video and ] cables. The benefit of using gold over other connector metals such as ] in these applications has been debated; gold connectors are often criticized by audio-visual experts as unnecessary for most consumers and seen as simply a marketing ploy. However, the use of gold in other applications in electronic sliding contacts in highly humid or corrosive atmospheres, and in use for contacts with a very high failure cost (certain ]s, communications equipment, ], ] engines) remains very common.<ref>{{cite book |editor-last=Krech III |editor-first=Shepard |editor2-last=Merchant |editor2-first=Carolyn |editor3-last=McNeill |editor3-first=John Robert |title=Encyclopedia of World Environmental History |volume=2: F–N |year=2004 |publisher=Routledge |isbn=978-0-415-93734-4 |pages=597– |url={{google books |plainurl=y |id=G7JrhAy5phoC |page=597}} }}</ref>
The primary source of gold is usually igneous rocks or surface concentrations. A deposit usually needs some form of secondary enrichment to form an economically viable ore deposit: either chemical or physical processes like ] or solution or more generally ], which concentrates the gold in sulfide minerals or quartz. There are several primary deposit types, common ones are termed reef or vein. Primary deposits can be weathered and eroded, with most of the gold being transported into stream beds where it congregates with other heavy minerals to form placer deposits. In all these deposits the gold is in its native form. Another important ore type is in ] black ] and ] deposits containing finely disseminated gold and other ] group metals.


Besides sliding electrical contacts, gold is also used in ] because of its resistance to ], ], ] and lack of ].<ref>{{cite web |title=General Electric Contact Materials |website=Electrical Contact Catalog (Material Catalog) |publisher=Tanaka Precious Metals |date=2005 |url=http://www.tanaka-precious.com/catalog/material.html|archive-url=https://web.archive.org/web/20010303213152/http://www.tanaka-precious.com/catalog/material.html|url-status=dead|archive-date=3 March 2001 |access-date=21 February 2007}}</ref> Switch contacts are generally subjected to more intense corrosion stress than are sliding contacts. Fine gold wires are used to connect ]s to their packages through a process known as ].
Gold occurs in sea water at 0.1 to 2 ]/1000 kg (0.1 - 2 ]) depending on sample location.


The concentration of free electrons in gold metal is 5.91×10<sup>22</sup>&nbsp;cm<sup>−3</sup>.<ref>{{Cite book |url=https://books.google.com/books?id=MaWKDQAAQBAJ&pg=SA2-PA8 |title=Electronic, Magnetic, and Optical Materials, Second Edition |last1=Fulay |first1=Pradeep |last2=Lee |first2=Jung-Kun |date=2016 |publisher=CRC Press |isbn=978-1-4987-0173-0}}</ref> Gold is highly ] to electricity and has been used for ] in some high-energy applications (only silver and copper are more conductive per volume, but gold has the advantage of corrosion resistance). For example, gold electrical wires were used during some of the ]'s atomic experiments, but large high-current silver wires were used in the ] isotope separator magnets in the project.
== Gold Production ==
]
Economic ] can be achieved from ore grades as little as 0.5 g/1000 kg (0.5 ppm) on average in large easily mined deposits, typical ore grades in ] mines are 1 - 5 g/1000 kg (1-5 ppm), ore grades in underground or ] mines are usually at least 3 g/1000 kg (3 ppm) on average. Ore grades of 30 g/1000 kg (30 ppm) are usually needed before gold will be visible to the naked eye, therefore even in gold mines you will often not see any gold.
]
] from alluvium ores by techniques of ] and from hard rock ores using ]. Refining of the metal is frequently accomplished by ] or ]. Gold occurs in sea water at 0.1 to 2 ]/1000 kg (0.1 - 2 ]) depending on sample location. However, ] there is no profitable method for recovering gold from sea water.


It is estimated that 16% of the world's presently-accounted-for gold and 22% of the world's silver is contained in electronic technology in Japan.<ref>{{cite news |url=http://www.techradar.com/news/phone-and-communications/mobile-phones/japan-wants-citizens-to-donate-their-phone-to-make-2020-olympic-medals-1326938 |title=Japan wants citizens to donate their old phone to make 2020 Olympics medals |work=TechRadar |date=23 August 2016 |author=Peckham, James}}</ref>
Since the 1880s ] has been the source for about two-thirds of the world's gold supply. The city of ] was built atop the world's greatest gold finds. Gold fields in the ] and the ] were deep and require the world's deepest mines. The ] of ]&ndash;] between the ] and the white ] was at least partly over the rights of miners and possession of the gold wealth in South Africa. Other major producers are ], ] and ]. Mines in ] and ] supply two-thirds of gold used in the United States.


== Compounds/isotopes == === Medicine ===
Metallic and gold compounds have long been used for medicinal purposes. Gold, usually as the metal, is perhaps the most anciently administered medicine (apparently by shamanic practitioners)<ref>{{cite journal |doi=10.1007/s10787-007-0021-x |title=Clinical pharmacology of gold |date=2008 |last1=Kean |first1=W. F. |last2=Kean |first2=I. R. L. |journal=Inflammopharmacology |volume=16 |issue=3 |pages=112–25 |pmid=18523733|s2cid=808858 }}</ref> and known to ].<ref>{{cite book |last1=Moir |first1=David Macbeth |url=https://archive.org/details/b21364047 |page= |title=Outlines of the ancient history of medicine |publisher=William Blackwood |date=1831}}</ref><ref>Mortier, Tom. {{Webarchive|url=https://web.archive.org/web/20131005015930/https://lirias.kuleuven.be/bitstream/1979/254/2/thesis_finaal.pdf |date=5 October 2013 }}, PhD thesis, University of Leuven (May 2006)</ref> In medieval times, gold was often seen as beneficial for the health, in the belief that something so rare and beautiful could not be anything but healthy. Even some modern ] and forms of ] assign metallic gold a healing power.
Auric chloride (Au]<sub>3</sub>) and chlorauric acid (]AuCl<sub>4</sub>) are the most common compounds of gold. Gold compounds can be aurous (univalent, +1) or auric (trivalent, +3). Gold also can under extreme conditions form a +5 state with fluorine (gold pentafluoride, AuF<sub>5</sub>), as well as (unusually for a metal), a -1 state. Such compounds containing the Au<sup>-</sup> ] are called ''aurides'' and include ] auride, CsAu, ]Au, and tetramethylammonium auride, (CH<sub>3</sub>)<sub>4</sub>N<sup>+</sup> Au<sup>-</sup>.


In the 19th century gold had a reputation as an ], a therapy for nervous disorders. ], ], ], and glandular problems such as ] and ] were treated, and most notably ] (Keeley, 1897).<ref>{{Cite journal |last1=Richards |first1=Douglas G. |last2=McMillin |first2=David L. |last3=Mein |first3=Eric A. |last4=Nelson |first4=Carl D. |name-list-style=amp |title=Gold and its relationship to neurological/glandular conditions |journal=The International Journal of Neuroscience |volume=112 |issue=1 |pages=31–53 |date=January 2002 |pmid=12152404 |doi=10.1080/00207450212018|s2cid=41188687 }}</ref>
Although gold is a ] it can form many compounds (] and ] are the most common). It also forms:
* It dissolves in ] to form the AuCl<sub>4</sub><sup>-</sup> ion
*]s (],],],])
*] (], ], ],])
*]s
*Aurous ]: an explosive olive-green powder, AuN<sub>2</sub>H<sub>4</sub>, known archaically as ''aurum fulminans''


The apparent paradox of the actual toxicology of the substance suggests the possibility of serious gaps in the understanding of the action of gold in physiology.<ref>{{cite journal |doi=10.1006/biol.1997.0123 |pmid=9637749 |title=Gold, the Noble Metal and the Paradoxes of its Toxicology |date=1998 |last1=Merchant |first1=B. |journal=Biologicals |volume=26 |pages=49–59 |issue=1}}</ref> Only salts and radioisotopes of gold are of pharmacological value, since elemental (metallic) gold is inert to all chemicals it encounters inside the body (e.g., ingested gold cannot be attacked by stomach acid). Some gold salts do have ] properties and at present two are still used as pharmaceuticals in the treatment of arthritis and other similar conditions in the US (] and ]). These drugs have been explored as a means to help to reduce the pain and swelling of ], and also (historically) against ] and some parasites.<ref name="Messori-2004">{{Cite book |first1=L. |last1=Messori |first2=G. |last2=Marcon |chapter-url=https://books.google.com/books?id=wgifUs8dFbgC&pg=PA279 |chapter=Gold Complexes in the treatment of Rheumatoid Arthritis |title=Metal ions and their complexes in medication |editor-last=Sigel |editor-first=Astrid |publisher=CRC Press |date=2004 |isbn=978-0-8247-5351-1 |pages=280–301}}</ref>
There is only one stable ] of gold, and 18 ]s with Au-195 being the most stable with a ] of 186 days.


Gold alloys are used in ], especially in tooth restorations, such as ] and permanent ]. The gold alloys' slight malleability facilitates the creation of a superior molar mating surface with other teeth and produces results that are generally more satisfactory than those produced by the creation of porcelain crowns. The use of gold crowns in more prominent teeth such as incisors is favored in some cultures and discouraged in others.
== Precautions ==

The human body does not absorb gold very well, thus compounds of gold are not normally very toxic. ] and ] damage has, however, been reported for up to 50% of arthritis patients treated with gold-containing drugs. Gold used in dentistry is widely regarded as the safest form of restorative material, as well as the most successful.
] preparations (suspensions of ]s) in water are intensely red-]ed, and can be made with tightly controlled particle sizes up to a few tens of nanometers across by reduction of gold chloride with ] or ] ions. Colloidal gold is used in research applications in medicine, biology and ]. The technique of ] exploits the ability of the gold particles to adsorb protein molecules onto their surfaces. Colloidal gold particles coated with specific antibodies can be used as probes for the presence and position of antigens on the surfaces of cells.<ref>{{Cite journal |doi=10.1016/0019-2791(71)90496-4 |pmid=4110101 |date=1971 |last1=Faulk |first1=W. P. |last2=Taylor |first2=G. M. |title=An immunocolloid method for the electron microscope |volume=8 |issue=11 |pages=1081–3 |journal=Immunochemistry}}</ref> In ultrathin sections of tissues viewed by ], the immunogold labels appear as extremely dense round spots at the position of the ].<ref>{{Cite journal |pmid=6153194 |date=1980 |last1=Roth |first1=J. |last2=Bendayan |first2=M. |last3=Orci |first3=L. |title=FITC-protein A-gold complex for light and electron microscopic immunocytochemistry |volume=28 |issue=1 |pages=55–7 |journal=Journal of Histochemistry and Cytochemistry |doi=10.1177/28.1.6153194 |doi-access=free}}</ref>

Gold, or alloys of gold and ], are applied as conductive coating to biological specimens and other non-conducting materials such as plastics and glass to be viewed in a ]. The coating, which is usually applied by ] with an ] ], has a triple role in this application. Gold's very high electrical conductivity drains ] to earth, and its very high density provides stopping power for electrons in the ], helping to limit the depth to which the electron beam penetrates the specimen. This improves definition of the position and topography of the specimen surface and increases the ] of the image. Gold also produces a high output of ] when irradiated by an electron beam, and these low-energy electrons are the most commonly used signal source used in the scanning electron microscope.<ref>{{Cite book |last1=Bozzola |first1=John J. |last2=Russell |first2=Lonnie Dee |url=https://books.google.com/books?id=RqSMzR-IXk0C&pg=PA65 |page=65 |title=Electron microscopy: principles and techniques for biologists |name-list-style=amp |publisher=Jones & Bartlett Learning |date=1999 |isbn=978-0-7637-0192-5}}</ref>

The isotope ] (] 2.7 days) is used in ], in some ] treatments and for treating other diseases.<ref>{{cite web |url=http://web.missouri.edu/~kattik/katti/katres.html |archive-url=https://web.archive.org/web/20090314121232/http://web.missouri.edu/~kattik/katti/katres.html |archive-date=14 March 2009 |title=Nanoscience and Nanotechnology in Nanomedicine: Hybrid Nanoparticles In Imaging and Therapy of Prostate Cancer |publisher=Radiopharmaceutical Sciences Institute, University of Missouri-Columbia}}</ref><ref>{{cite journal |doi=10.1211/jpp.60.8.0005 |title=Radiotherapy enhancement with gold nanoparticles |date=2008 |last1=Hainfeld |first1=James F. |last2=Dilmanian |first2=F. Avraham |last3=Slatkin |first3=Daniel N. |last4=Smilowitz |first4=Henry M. |s2cid=32861131 |journal=Journal of Pharmacy and Pharmacology |volume=60 |issue=8 |pages=977–85 |pmid=18644191 }}</ref>

=== Cuisine ===
{{CSS image crop
|Image = Dessert (10938449815).jpg
|bSize = 300
|cWidth = 220
|cHeight = 180
|oTop = 20
|oLeft = 52
|Description = Cake with edible gold decoration
}}
* Gold can be used in food and has the ] 175.<ref name="FSA-2007">{{Cite news |url=http://www.food.gov.uk/safereating/chemsafe/additivesbranch/enumberlist |title=Current EU approved additives and their E Numbers |date=27 July 2007 |publisher=Food Standards Agency, UK}}</ref> In 2016, the ] published an opinion on the re-evaluation of gold as a food additive. Concerns included the possible presence of minute amounts of gold ]s in the food additive, and that gold nanoparticles have been shown to be ] in mammalian cells ].<ref>{{cite journal |title=Scientific Opinion on the re-evaluation of gold (E 175) as a food additive |journal=EFSA Journal |volume=14 |issue=1 |year=2016 |issn=1831-4732 |doi=10.2903/j.efsa.2016.4362 |page=4362|doi-access=free}}</ref>
* ], flake or dust is used on and in some gourmet foods, notably sweets and drinks as decorative ingredient.<ref>{{cite web |title=The Food Dictionary: Varak |publisher=Barron's Educational Services, Inc. |date=1995 |url=http://www.epicurious.com/cooking/how_to/food_dictionary/entry?id=5061 |archive-url=https://web.archive.org/web/20060523014547/http://www.epicurious.com/cooking/how_to/food_dictionary/entry?id=5061 |archive-date=23 May 2006 |access-date=27 May 2007}}</ref> Gold flake was used by the nobility in ] as a decoration in food and drinks,<ref>{{Cite book |url=https://books.google.com/books?id=OMLuBQAAQBAJ&pg=PT94 |title=Commensality: From Everyday Food to Feast |last1=Kerner |first1=Susanne |last2=Chou |first2=Cynthia |last3=Warmind |first3=Morten |page=94 |date=2015 |publisher=Bloomsbury Publishing |isbn=978-0-85785-719-4}}</ref>
* Danziger Goldwasser (German: Gold water of Danzig) or ] ({{langx|en|Goldwater}}) is a traditional German herbal ]<ref>{{Cite book |chapter-url=https://books.google.com/books?id=tsUNAAAAYAAJ&pg=PA101 |title=Deutschland nebst Theilen der angrenzenden Länder |chapter=Danzig |first=Karl |last=Baedeker |date=1865 |publisher=Karl Baedeker |language=de}}</ref> produced in what is today ], ], and ], Germany, and contains flakes of gold leaf. There are also some expensive (c. $1000) cocktails which contain flakes of gold leaf. However, since metallic gold is inert to all body chemistry, it has no taste, it provides no nutrition, and it leaves the body unaltered.<ref>{{cite web |url=http://geology.com/minerals/gold/uses-of-gold.shtml |title=The Many Uses of Gold |access-date=6 June 2009 |author=King, Hobart M. |publisher=geology.com}}</ref>
* ] is a ] composed of a pure metal that is sometimes gold,<ref> {{Webarchive|url=https://web.archive.org/web/20160304002554/http://www.delafee.com/Edible+Gold+Creations_Information+on+edible+gold/ |date=4 March 2016 }}. deLafee, Switzerland (2008)</ref> and is used for ] sweets in South Asian cuisine.

=== Miscellanea ===
] for the ] coated in gold to reflect infrared light]]
].]]
* Gold produces a deep, intense red color when used as a coloring agent in ].
* In photography, gold toners are used to shift the color of ] black-and-white prints towards brown or blue tones, or to increase their stability. Used on ] prints, gold toners produce red tones. Kodak published formulas for several types of gold toners, which use gold as the chloride.<ref>. Kodak Technical Data/Reference sheet G-23, May 2006.</ref>
* Gold is a good reflector of ] such as ] and ], as well as ]. It is used for the protective coatings on many artificial ]s, in infrared protective faceplates in thermal-protection suits and astronauts' helmets, and in ] planes such as the ].
* Gold is used as the reflective layer on some ].
* Automobiles may use gold for heat shielding. ] uses gold foil in the engine compartment of its ] model.<ref>{{cite book |last1=Martin |first1=Keith |url=https://books.google.com/books?id=pUhMRLiHiY8C&pg=PA42 |title=1997 McLaren F1}}</ref>
* Gold can be manufactured so thin that it appears semi-transparent. It is used in some aircraft cockpit windows for ] or anti-icing by passing electricity through it. The heat produced by the resistance of the gold is enough to prevent ice from forming.<ref name="GoldBulletin">{{Cite news |url=http://www.goldbulletin.org/assets/file/goldbulletin/downloads/Cooke_2_15.pdf |archive-url=https://web.archive.org/web/20110726122946/http://www.goldbulletin.org/assets/file/goldbulletin/downloads/Cooke_2_15.pdf |archive-date=26 July 2011 |title=The Demand for Gold by Industry |publisher=Gold bulletin |access-date=6 June 2009}}</ref>
* Gold is attacked by and dissolves in alkaline solutions of potassium or sodium ], to form the salt gold cyanide—a technique that has been used in extracting metallic gold from ores in the ]. Gold cyanide is the ] used in commercial ] of gold onto base metals and ].
* Gold chloride (]) solutions are used to make colloidal gold by reduction with ] or ] ]. Gold chloride and gold oxide are used to make cranberry or red-colored glass, which, like ]al gold suspensions, contains evenly sized spherical ]s.<ref>{{cite web |url=http://chemistry.about.com/cs/inorganic/a/aa032503a.htm |title=Colored glass chemistry |access-date=6 June 2009 |archive-date=13 February 2009 |archive-url=https://web.archive.org/web/20090213164051/http://chemistry.about.com/cs/inorganic/a/aa032503a.htm |url-status=dead }}</ref>
* Gold, when dispersed in nanoparticles, can act as a ] of chemical reactions.
* In recent years, gold has been used as a symbol of pride by the ], as its symbol Au could be seen as similar to the word "]".<ref>{{cite web |date=2 April 2021 |title=Why 'Going Gold' is important on Autism Acceptance Day. |url=https://edpsy.org.uk/blog/2021/why-going-gold-is-important-on-autism-acceptance-day-2nd-april/ |website=Edpsy}}</ref>

== Toxicity ==
Pure metallic (elemental) gold is non-toxic and non-irritating when ingested<ref>{{cite web |last=Dierks |first=S. |title=Gold MSDS |url=http://www.espi-metals.com/msds's/gold.htm |archive-url=https://web.archive.org/web/20061110104358/http://www.espi-metals.com/msds%27s/gold.htm |url-status=dead |archive-date=10 November 2006 |publisher=Electronic Space Products International |date=May 2005 |access-date=21 December 2021 }}</ref> and is sometimes used as a food decoration in the form of ].<ref>{{Cite book |url=https://books.google.com/books?id=4zK6CgAAQBAJ&pg=PA5 |title=Gold Nanoparticles for Physics, Chemistry and Biology |last1=Louis |first1=Catherine |last2=Pluchery |first2=Olivier |date=2012 |publisher=World Scientific |isbn=978-1-84816-807-7}}</ref> Metallic gold is also a component of the alcoholic drinks ], ], and ]. Metallic gold is approved as a ] in the EU (] in the ]). Although the gold ion is toxic, the acceptance of metallic gold as a food additive is due to its relative chemical inertness, and resistance to being corroded or transformed into soluble salts (gold compounds) by any known chemical process which would be encountered in the human body.

Soluble compounds (]) such as ] are toxic to the liver and kidneys. Common ] salts of gold such as potassium gold cyanide, used in gold ], are toxic by virtue of both their cyanide and gold content. There are rare cases of lethal gold poisoning from ].<ref>{{Cite journal |last1=Wright |first1=I. H. |first2=J. C. |last2=Vesey |date=1986 |title=Acute poisoning with gold cyanide |journal=Anaesthesia |volume=41 |issue=79 |pages=936–939 |doi=10.1111/j.1365-2044.1986.tb12920.x |pmid=3022615|s2cid=32434351 |doi-access=free }}</ref><ref>{{Cite journal |last1=Wu |first1=Ming-Ling |first2=Wei-Jen |last2=Tsai |first3=Jiin |last3=Ger |first4=Jou-Fang |last4=Deng |last5=Tsay |first5=Shyh-Haw |display-authors=5 |last6=Yang |first6=Mo-Hsiung |journal=Clinical Toxicology |date=2001 |volume=39 |issue=7 |pages=739–743 |title=Cholestatic Hepatitis Caused by Acute Gold Potassium Cyanide Poisoning |doi=10.1081/CLT-100108516 |pmid=11778673|s2cid=44722156 }}</ref> Gold toxicity can be ameliorated with ] with an agent such as ].

Gold metal was voted ] in 2001 by the American Contact Dermatitis Society; gold contact allergies affect mostly women.<ref name="Tsuruta-2001">{{cite journal |last1=Tsuruta |first1=Kyoko |last2=Matsunaga |first2=Kayoko |last3=Suzuki |first3=Kayoko |last4=Suzuki |first4=Rie |last5=Akita |first5=Hirotaka |last6=Washimi |first6=Yasuko |last7=Tomitaka |first7=Akiko |last8=Ueda |first8=Hiroshi |title=Female predominance of gold allergy |journal=Contact Dermatitis |volume=44 |issue=1 |year=2001 |pages=48–49 |doi=10.1034/j.1600-0536.2001.440107-22.x |pmid=11156030|s2cid=42268840 }}</ref> Despite this, gold is a relatively non-potent contact allergen, in comparison with metals like ].<ref>{{Cite news |last=Brunk |first=Doug |url=http://www.highbeam.com/doc/1G1-176478357.html |archive-url=https://web.archive.org/web/20110624033428/http://www.highbeam.com/doc/1G1-176478357.html |url-status=dead |archive-date=24 June 2011 |title=Ubiquitous nickel wins skin contact allergy award for 2008 |date=15 February 2008}}</ref>

A sample of the fungus '']'' was found growing from gold mining solution; and was found to contain cyano metal complexes, such as gold, silver, copper, iron and zinc. The fungus also plays a role in the solubilization of heavy metal sulfides.<ref>{{cite book |last=Singh |first=Harbhajan |url=https://books.google.com/books?id=WY3YvfNoouMC&pg=PA533 |title=Mycoremediation: Fungal Bioremediation |page=509 |isbn=978-0-470-05058-3 |date=2006|publisher=John Wiley & Sons }}</ref>

== See also ==
]
{{Colbegin|colwidth=20em}}
* ], for sampling ores
* ] (dermatological condition)
* ], form of electronic currency
* ] business consultancy
* ], use impurities to identify an alloy
* ] in banking
* ]
* ], alloy of gold and copper
* ], fool's gold
* ], non-gold copper alloy
{{colend}}{{Clear}}


== References == == References ==
{{Reflist|30em}}
*

*
==Further reading==
* Bachmann, H. G. ''The lure of gold : an artistic and cultural history'' (2006)
* Bernstein, Peter L. ''The Power of Gold: The History of an Obsession'' (2000)
* Brands, H.W. ''The Age of Gold: The California Gold Rush and the New American Dream'' (2003)
* Buranelli, Vincent. ''Gold : an illustrated history'' (1979) ' wide-ranging popular history
* Cassel, Gustav. "The restoration of the gold standard." ''Economica'' 9 (1923): 171–185.
* Eichengreen, Barry. ''Golden Fetters: The Gold Standard and the Great Depression, 1919–1939'' (Oxford UP, 1992).
* Ferguson, Niall. ''The Ascent of Money – Financial History of the World'' (2009)
* Hart, Matthew, ''Gold : the race for the world's most seductive metal", New York: Simon & Schuster, 2013. {{ISBN|9781451650020}}''
* Johnson, Harry G. "The gold rush of 1968 in retrospect and prospect". ''American Economic Review'' 59.2 (1969): 344–348.
* Kwarteng, Kwasi. ''War and Gold: A Five-Hundred-Year History of Empires, Adventures, and Debt'' (2014)
* Vilar, Pierre. ''A History of Gold and Money, 1450–1920'' (1960).
* Vilches, Elvira. ''New World Gold: Cultural Anxiety and Monetary Disorder in Early Modern Spain'' (2010).


== External links == == External links ==
{{Wikiquote|Gold}}
* (also used as a reference)
{{Commons|Gold}}
* (also used as a reference)
{{Wiktionary|gold}}
*
* {{cite EB1911|wstitle=Gold|volume=11|short=x}}
*
* (MP3) from the ]'s ]: www.rsc.org
*
* at '']'' (University of Nottingham)
*
* , www.lateralscience.co.uk
*
* {{webarchive |url=https://web.archive.org/web/20080307000911/http://www.epa.gov/epaoswer/other/mining/techdocs/gold.pdf |date=7 March 2008 |title=Technical Document on Extraction and Mining of Gold }}, www.epa.gov
* – rsc.org


{{Periodic table (navbox)}}
]
{{Gold compounds}}
{{Jewellery}}
{{Authority control}}

]
] ]
] ]
]
<!-- The below are interlanguage links. -->
]

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

Latest revision as of 06:23, 6 December 2024

This article is about the element. For other uses, see Gold (disambiguation). "Element 79" redirects here. For the anthology, see Element 79 (anthology).

Chemical element with atomic number 79 (Au)
Gold, 79Au
Gold
AppearanceMetallic yellow
Standard atomic weight Ar°(Au)
  • 196.966570±0.000004
  • 196.97±0.01 (abridged)
Gold in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Ag

Au

Rg
platinumgoldmercury
Atomic number (Z)79
Groupgroup 11
Periodperiod 6
Block  d-block
Electron configuration[Xe] 4f 5d 6s
Electrons per shell2, 8, 18, 32, 18, 1
Physical properties
Phase at STPsolid
Melting point1337.33 K ​(1064.18 °C, ​1947.52 °F)
Boiling point3243 K ​(2970 °C, ​5378 °F)
Density (at 20° C)19.283 g/cm 
when liquid (at m.p.)17.31 g/cm
Heat of fusion12.55 kJ/mol
Heat of vaporization342 kJ/mol
Molar heat capacity25.418 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1646 1814 2021 2281 2620 3078
Atomic properties
Oxidation statescommon: +3
−3, −2, −1, 0, +1, +2, +5
ElectronegativityPauling scale: 2.54
Ionization energies
  • 1st: 890.1 kJ/mol
  • 2nd: 1980 kJ/mol
Atomic radiusempirical: 144 pm
Covalent radius136±6 pm
Van der Waals radius166 pm
Color lines in a spectral range
Spectral lines of gold
Other properties
Natural occurrenceprimordial
Crystal structureface-centered cubic (fcc) (cF4)
Lattice constantFace centered cubic crystal structure for golda = 407.86 pm (at 20 °C)
Thermal expansion14.13×10/K (at 20 °C)
Thermal conductivity318 W/(m⋅K)
Electrical resistivity22.14 nΩ⋅m (at 20 °C)
Magnetic orderingdiamagnetic
Molar magnetic susceptibility−28.0×10 cm/mol (at 296 K)
Tensile strength120 MPa
Young's modulus79 GPa
Shear modulus27 GPa
Bulk modulus180 GPa
Speed of sound thin rod2030 m/s (at r.t.)
Poisson ratio0.4
Mohs hardness2.5
Vickers hardness188–216 MPa
Brinell hardness188–245 MPa
CAS Number7440-57-5
History
Namingfrom Latin aurum 'gold'
DiscoveryIn the Middle East (before 6000 BCE)
Symbol"Au": from Latin aurum
Isotopes of gold
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Au synth 186.01 d ε Pt
Au synth 6.165 d β Pt
β Hg
Au 100% stable
Au synth 2.69464 d β Hg
Au synth 3.139 d β Hg
 Category: Gold
| references

Gold is a chemical element with the chemical symbol Au (from Latin aurum) and atomic number 79. In its pure form, it is a bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal, a group 11 element, and one of the noble metals. It is one of the least reactive chemical elements, being the second-lowest in the reactivity series. It is solid under standard conditions.

Gold often occurs in free elemental (native state), as nuggets or grains, in rocks, veins, and alluvial deposits. It occurs in a solid solution series with the native element silver (as in electrum), naturally alloyed with other metals like copper and palladium, and mineral inclusions such as within pyrite. Less commonly, it occurs in minerals as gold compounds, often with tellurium (gold tellurides).

Gold is resistant to most acids, though it does dissolve in aqua regia (a mixture of nitric acid and hydrochloric acid), forming a soluble tetrachloroaurate anion. Gold is insoluble in nitric acid alone, which dissolves silver and base metals, a property long used to refine gold and confirm the presence of gold in metallic substances, giving rise to the term 'acid test'. Gold dissolves in alkaline solutions of cyanide, which are used in mining and electroplating. Gold also dissolves in mercury, forming amalgam alloys, and as the gold acts simply as a solute, this is not a chemical reaction.

A relatively rare element, gold is a precious metal that has been used for coinage, jewelry, and other works of art throughout recorded history. In the past, a gold standard was often implemented as a monetary policy. Gold coins ceased to be minted as a circulating currency in the 1930s, and the world gold standard was abandoned for a fiat currency system after the Nixon shock measures of 1971.

In 2023, the world's largest gold producer was China, followed by Russia and Australia. As of 2020, a total of around 201,296 tonnes of gold exist above ground. This is equal to a cube, with each side measuring roughly 21.7 meters (71 ft). The world's consumption of new gold produced is about 50% in jewelry, 40% in investments, and 10% in industry. Gold's high malleability, ductility, resistance to corrosion and most other chemical reactions, as well as conductivity of electricity have led to its continued use in corrosion-resistant electrical connectors in all types of computerized devices (its chief industrial use). Gold is also used in infrared shielding, the production of colored glass, gold leafing, and tooth restoration. Certain gold salts are still used as anti-inflammatory agents in medicine.

Characteristics

Gold can be drawn into a monatomic wire, and then stretched more before it breaks.
A gold nugget of 5 mm (0.20 in) in size can be hammered into a gold foil of about 0.5 m (5.4 sq ft) in area.

Gold is the most malleable of all metals. It can be drawn into a wire of single-atom width, and then stretched considerably before it breaks. Such nanowires distort via the formation, reorientation, and migration of dislocations and crystal twins without noticeable hardening. A single gram of gold can be beaten into a sheet of 1 square metre (11 sq ft), and an avoirdupois ounce into 28 square metres (300 sq ft). Gold leaf can be beaten thin enough to become semi-transparent. The transmitted light appears greenish-blue because gold strongly reflects yellow and red. Such semi-transparent sheets also strongly reflect infrared light, making them useful as infrared (radiant heat) shields in the visors of heat-resistant suits and in sun visors for spacesuits. Gold is a good conductor of heat and electricity.

Gold has a density of 19.3 g/cm, almost identical to that of tungsten at 19.25 g/cm; as such, tungsten has been used in the counterfeiting of gold bars, such as by plating a tungsten bar with gold. By comparison, the density of lead is 11.34 g/cm, and that of the densest element, osmium, is 22.588±0.015 g/cm.

Color

Main article: Colored gold
Gold bars, also called ingots or bullion
Different colors of Ag–Au–Cu alloys

Whereas most metals are gray or silvery white, gold is slightly reddish-yellow. This color is determined by the frequency of plasma oscillations among the metal's valence electrons, in the ultraviolet range for most metals but in the visible range for gold due to relativistic effects affecting the orbitals around gold atoms. Similar effects impart a golden hue to metallic caesium.

Common colored gold alloys include the distinctive eighteen-karat rose gold created by the addition of copper. Alloys containing palladium or nickel are also important in commercial jewelry as these produce white gold alloys. Fourteen-karat gold-copper alloy is nearly identical in color to certain bronze alloys, and both may be used to produce police and other badges. Fourteen- and eighteen-karat gold alloys with silver alone appear greenish-yellow and are referred to as green gold. Blue gold can be made by alloying with iron, and purple gold can be made by alloying with aluminium. Less commonly, addition of manganese, indium, and other elements can produce more unusual colors of gold for various applications.

Colloidal gold, used by electron-microscopists, is red if the particles are small; larger particles of colloidal gold are blue.

Isotopes

Main article: Isotopes of gold

Gold has only one stable isotope,
Au, which is also its only naturally occurring isotope, so gold is both a mononuclidic and monoisotopic element. Thirty-six radioisotopes have been synthesized, ranging in atomic mass from 169 to 205. The most stable of these is
Au with a half-life of 186.1 days. The least stable is
Au, which decays by proton emission with a half-life of 30 μs. Most of gold's radioisotopes with atomic masses below 197 decay by some combination of proton emission, α decay, and β decay. The exceptions are
Au, which decays by electron capture, and
Au, which decays most often by electron capture (93%) with a minor β decay path (7%). All of gold's radioisotopes with atomic masses above 197 decay by β decay.

At least 32 nuclear isomers have also been characterized, ranging in atomic mass from 170 to 200. Within that range, only
Au,
Au,
Au,
Au, and
Au do not have isomers. Gold's most stable isomer is
Au with a half-life of 2.27 days. Gold's least stable isomer is
Au with a half-life of only 7 ns.
Au has three decay paths: β decay, isomeric transition, and alpha decay. No other isomer or isotope of gold has three decay paths.

Synthesis

See also: Synthesis of precious metals

The possible production of gold from a more common element, such as lead, has long been a subject of human inquiry, and the ancient and medieval discipline of alchemy often focused on it; however, the transmutation of the chemical elements did not become possible until the understanding of nuclear physics in the 20th century. The first synthesis of gold was conducted by Japanese physicist Hantaro Nagaoka, who synthesized gold from mercury in 1924 by neutron bombardment. An American team, working without knowledge of Nagaoka's prior study, conducted the same experiment in 1941, achieving the same result and showing that the isotopes of gold produced by it were all radioactive. In 1980, Glenn Seaborg transmuted several thousand atoms of bismuth into gold at the Lawrence Berkeley Laboratory. Gold can be manufactured in a nuclear reactor, but doing so is highly impractical and would cost far more than the value of the gold that is produced.

Chemistry

Main article: Gold compounds
Gold(III) chloride solution in water

Although gold is the most noble of the noble metals, it still forms many diverse compounds. The oxidation state of gold in its compounds ranges from −1 to +5, but Au(I) and Au(III) dominate its chemistry. Au(I), referred to as the aurous ion, is the most common oxidation state with soft ligands such as thioethers, thiolates, and organophosphines. Au(I) compounds are typically linear. A good example is Au(CN)−2, which is the soluble form of gold encountered in mining. The binary gold halides, such as AuCl, form zigzag polymeric chains, again featuring linear coordination at Au. Most drugs based on gold are Au(I) derivatives.

Au(III) (referred to as auric) is a common oxidation state, and is illustrated by gold(III) chloride, Au2Cl6. The gold atom centers in Au(III) complexes, like other d compounds, are typically square planar, with chemical bonds that have both covalent and ionic character. Gold(I,III) chloride is also known, an example of a mixed-valence complex.

Gold does not react with oxygen at any temperature and, up to 100 °C, is resistant to attack from ozone: Au + O 2 ( no reaction ) {\displaystyle {\ce {Au + O2 ->}}({\text{no reaction}})} Au + O 3 t < 100 C ( no reaction ) {\displaystyle {\ce {Au{}+O3->}}({\text{no reaction}})}

Some free halogens react to form the corresponding gold halides. Gold is strongly attacked by fluorine at dull-red heat to form gold(III) fluoride AuF3. Powdered gold reacts with chlorine at 180 °C to form gold(III) chloride AuCl3. Gold reacts with bromine at 140 °C to form a combination of gold(III) bromide AuBr3 and gold(I) bromide AuBr, but reacts very slowly with iodine to form gold(I) iodide AuI: 2 Au + 3 F 2 Δ 2 AuF 3 {\displaystyle {\ce {2Au{}+3F2->2AuF3}}} 2 Au + 3 Cl 2 Δ 2 AuCl 3 {\displaystyle {\ce {2Au{}+3Cl2->2AuCl3}}} 2 Au + 2 Br 2 Δ AuBr 3 + AuBr {\displaystyle {\ce {2Au{}+2Br2->AuBr3{}+AuBr}}} 2 Au + I 2 Δ 2 AuI {\displaystyle {\ce {2Au{}+I2->2AuI}}}

Gold does not react with sulfur directly, but gold(III) sulfide can be made by passing hydrogen sulfide through a dilute solution of gold(III) chloride or chlorauric acid.

Unlike sulfur, phosphorus reacts directly with gold at elevated temperatures to produce gold phosphide (Au2P3).

Gold readily dissolves in mercury at room temperature to form an amalgam, and forms alloys with many other metals at higher temperatures. These alloys can be produced to modify the hardness and other metallurgical properties, to control melting point or to create exotic colors.

Gold is unaffected by most acids. It does not react with hydrofluoric, hydrochloric, hydrobromic, hydriodic, sulfuric, or nitric acid. It does react with selenic acid, and is dissolved by aqua regia, a 1:3 mixture of nitric acid and hydrochloric acid. Nitric acid oxidizes the metal to +3 ions, but only in minute amounts, typically undetectable in the pure acid because of the chemical equilibrium of the reaction. However, the ions are removed from the equilibrium by hydrochloric acid, forming AuCl−4 ions, or chloroauric acid, thereby enabling further oxidation: 2 Au + 6 H 2 SeO 4 200 C Au 2 ( SeO 4 ) 3 + 3 H 2 SeO 3 + 3 H 2 O {\displaystyle {\ce {2Au{}+6H2SeO4->Au2(SeO4)3{}+3H2SeO3{}+3H2O}}} Au + 4 HCl + HNO 3 HAuCl 4 + NO + 2 H 2 O {\displaystyle {\ce {Au{}+4HCl{}+HNO3->HAuCl4{}+NO\uparrow +2H2O}}}

Gold is similarly unaffected by most bases. It does not react with aqueous, solid, or molten sodium or potassium hydroxide. It does however, react with sodium or potassium cyanide under alkaline conditions when oxygen is present to form soluble complexes.

Common oxidation states of gold include +1 (gold(I) or aurous compounds) and +3 (gold(III) or auric compounds). Gold ions in solution are readily reduced and precipitated as metal by adding any other metal as the reducing agent. The added metal is oxidized and dissolves, allowing the gold to be displaced from solution and be recovered as a solid precipitate.

Rare oxidation states

Less common oxidation states of gold include −1, +2, and +5.

The −1 oxidation state occurs in aurides, compounds containing the Au anion. Caesium auride (CsAu), for example, crystallizes in the caesium chloride motif; rubidium, potassium, and tetramethylammonium aurides are also known. Gold has the highest electron affinity of any metal, at 222.8 kJ/mol, making Au a stable species, analogous to the halides.

Gold also has a –1 oxidation state in covalent complexes with the group 4 transition metals, such as in titanium tetraauride and the analogous zirconium and hafnium compounds. These chemicals are expected to form gold-bridged dimers in a manner similar to titanium(IV) hydride.

Gold(II) compounds are usually diamagnetic with Au–Au bonds such as 2Cl2. The evaporation of a solution of Au(OH)3 in concentrated H2SO4 produces red crystals of gold(II) sulfate, Au2(SO4)2. Originally thought to be a mixed-valence compound, it has been shown to contain Au4+2 cations, analogous to the better-known mercury(I) ion, Hg2+2. A gold(II) complex, the tetraxenonogold(II) cation, which contains xenon as a ligand, occurs in [AuXe4](Sb2F11)2. In September 2023, a novel type of metal-halide perovskite material consisting of Au and Au cations in its crystal structure has been found. It has been shown to be unexpectedly stable at normal conditions.

Gold pentafluoride, along with its derivative anion, AuF−6, and its difluorine complex, gold heptafluoride, is the sole example of gold(V), the highest verified oxidation state.

Some gold compounds exhibit aurophilic bonding, which describes the tendency of gold ions to interact at distances that are too long to be a conventional Au–Au bond but shorter than van der Waals bonding. The interaction is estimated to be comparable in strength to that of a hydrogen bond.

Well-defined cluster compounds are numerous. In some cases, gold has a fractional oxidation state. A representative example is the octahedral species {Au(P(C6H5)3)}2+6.

Origin

Gold production in the universe

Schematic of a NE (left) to SW (right) cross-section through the 2.020-billion-year-old Vredefort impact structure in South Africa and how it distorted the contemporary geological structures. The present erosion level is shown. Johannesburg is located where the Witwatersrand Basin (the yellow layer) is exposed at the "present surface" line, just inside the crater rim, on the left. Not to scale.

Gold is thought to have been produced in supernova nucleosynthesis, and from the collision of neutron stars, and to have been present in the dust from which the Solar System formed.

Traditionally, gold in the universe is thought to have formed by the r-process (rapid neutron capture) in supernova nucleosynthesis, but more recently it has been suggested that gold and other elements heavier than iron may also be produced in quantity by the r-process in the collision of neutron stars. In both cases, satellite spectrometers at first only indirectly detected the resulting gold. However, in August 2017, the spectroscopic signatures of heavy elements, including gold, were observed by electromagnetic observatories in the GW170817 neutron star merger event, after gravitational wave detectors confirmed the event as a neutron star merger. Current astrophysical models suggest that this single neutron star merger event generated between 3 and 13 Earth masses of gold. This amount, along with estimations of the rate of occurrence of these neutron star merger events, suggests that such mergers may produce enough gold to account for most of the abundance of this element in the universe.

Asteroid origin theories

Because the Earth was molten when it was formed, almost all of the gold present in the early Earth probably sank into the planetary core. Therefore, as hypothesized in one model, most of the gold in the Earth's crust and mantle is thought to have been delivered to Earth by asteroid impacts during the Late Heavy Bombardment, about 4 billion years ago.

Gold which is reachable by humans has, in one case, been associated with a particular asteroid impact. The asteroid that formed Vredefort impact structure 2.020 billion years ago is often credited with seeding the Witwatersrand basin in South Africa with the richest gold deposits on earth. However, this scenario is now questioned. The gold-bearing Witwatersrand rocks were laid down between 700 and 950 million years before the Vredefort impact. These gold-bearing rocks had furthermore been covered by a thick layer of Ventersdorp lavas and the Transvaal Supergroup of rocks before the meteor struck, and thus the gold did not actually arrive in the asteroid/meteorite. What the Vredefort impact achieved, however, was to distort the Witwatersrand basin in such a way that the gold-bearing rocks were brought to the present erosion surface in Johannesburg, on the Witwatersrand, just inside the rim of the original 300 km (190 mi) diameter crater caused by the meteor strike. The discovery of the deposit in 1886 launched the Witwatersrand Gold Rush. Some 22% of all the gold that is ascertained to exist today on Earth has been extracted from these Witwatersrand rocks.

Mantle return theories

Much of the rest of the gold on Earth is thought to have been incorporated into the planet since its very beginning, as planetesimals formed the mantle. In 2017, an international group of scientists established that gold "came to the Earth's surface from the deepest regions of our planet", the mantle, as evidenced by their findings at Deseado Massif in the Argentinian Patagonia.

Occurrence

Native gold

On Earth, gold is found in ores in rock formed from the Precambrian time onward. It most often occurs as a native metal, typically in a metal solid solution with silver (i.e. as a gold/silver alloy). Such alloys usually have a silver content of 8–10%. Electrum is elemental gold with more than 20% silver, and is commonly known as white gold. Electrum's color runs from golden-silvery to silvery, dependent upon the silver content. The more silver, the lower the specific gravity.

Gold in pyrite

Native gold occurs as very small to microscopic particles embedded in rock, often together with quartz or sulfide minerals such as "fool's gold", which is a pyrite. These are called lode deposits. The metal in a native state is also found in the form of free flakes, grains or larger nuggets that have been eroded from rocks and end up in alluvial deposits called placer deposits. Such free gold is always richer at the exposed surface of gold-bearing veins, owing to the oxidation of accompanying minerals followed by weathering; and by washing of the dust into streams and rivers, where it collects and can be welded by water action to form nuggets.

Gold sometimes occurs combined with tellurium as the minerals calaverite, krennerite, nagyagite, petzite and sylvanite (see telluride minerals), and as the rare bismuthide maldonite (Au2Bi) and antimonide aurostibite (AuSb2). Gold also occurs in rare alloys with copper, lead, and mercury: the minerals auricupride (Cu3Au), novodneprite (AuPb3) and weishanite ((Au,Ag)3Hg2).

A 2004 research paper suggests that microbes can sometimes play an important role in forming gold deposits, transporting and precipitating gold to form grains and nuggets that collect in alluvial deposits.

A 2013 study has claimed water in faults vaporizes during an earthquake, depositing gold. When an earthquake strikes, it moves along a fault. Water often lubricates faults, filling in fractures and jogs. About 10 kilometres (6.2 mi) below the surface, under very high temperatures and pressures, the water carries high concentrations of carbon dioxide, silica, and gold. During an earthquake, the fault jog suddenly opens wider. The water inside the void instantly vaporizes, flashing to steam and forcing silica, which forms the mineral quartz, and gold out of the fluids and onto nearby surfaces.

Seawater

The world's oceans contain gold. Measured concentrations of gold in the Atlantic and Northeast Pacific are 50–150 femtomol/L or 10–30 parts per quadrillion (about 10–30 g/km). In general, gold concentrations for south Atlantic and central Pacific samples are the same (~50 femtomol/L) but less certain. Mediterranean deep waters contain slightly higher concentrations of gold (100–150 femtomol/L), which is attributed to wind-blown dust or rivers. At 10 parts per quadrillion, the Earth's oceans would hold 15,000 tonnes of gold. These figures are three orders of magnitude less than reported in the literature prior to 1988, indicating contamination problems with the earlier data.

A number of people have claimed to be able to economically recover gold from sea water, but they were either mistaken or acted in an intentional deception. Prescott Jernegan ran a gold-from-seawater swindle in the United States in the 1890s, as did an English fraudster in the early 1900s. Fritz Haber did research on the extraction of gold from sea water in an effort to help pay Germany's reparations following World War I. Based on the published values of 2 to 64 ppb of gold in seawater, a commercially successful extraction seemed possible. After analysis of 4,000 water samples yielding an average of 0.004 ppb, it became clear that extraction would not be possible, and he ended the project.

History

Oldest golden artifacts in the world (4600–4200 BC) from Varna necropolis, Bulgaria — grave offerings on exposition in Varna Museum.
An Indian tribute-bearer at Apadana, from the Achaemenid satrapy of Hindush, carrying gold on a yoke, circa 500 BC.
The Muisca raft, between circa 600–1600 AD. The figure refers to the ceremony of the legend of El Dorado. The zipa used to cover his body in gold dust, and from his raft, he offered treasures to the Guatavita goddess in the middle of the sacred lake. This old Muisca tradition became the origin of the legend of El Dorado.
This Muisca raft figure is on display in the Gold Museum, Bogotá, Colombia.

The earliest recorded metal employed by humans appears to be gold, which can be found free or "native". Small amounts of natural gold have been found in Spanish caves used during the late Paleolithic period, c. 40,000 BC.

The oldest gold artifacts in the world are from Bulgaria and are dating back to the 5th millennium BC (4,600 BC to 4,200 BC), such as those found in the Varna Necropolis near Lake Varna and the Black Sea coast, thought to be the earliest "well-dated" finding of gold artifacts in history.

Gold artifacts probably made their first appearance in Ancient Egypt at the very beginning of the pre-dynastic period, at the end of the fifth millennium BC and the start of the fourth, and smelting was developed during the course of the 4th millennium; gold artifacts appear in the archeology of Lower Mesopotamia during the early 4th millennium. As of 1990, gold artifacts found at the Wadi Qana cave cemetery of the 4th millennium BC in West Bank were the earliest from the Levant. Gold artifacts such as the golden hats and the Nebra disk appeared in Central Europe from the 2nd millennium BC Bronze Age.

The oldest known map of a gold mine was drawn in the 19th Dynasty of Ancient Egypt (1320–1200 BC), whereas the first written reference to gold was recorded in the 12th Dynasty around 1900 BC. Egyptian hieroglyphs from as early as 2600 BC describe gold, which King Tushratta of the Mitanni claimed was "more plentiful than dirt" in Egypt. Egypt and especially Nubia had the resources to make them major gold-producing areas for much of history. One of the earliest known maps, known as the Turin Papyrus Map, shows the plan of a gold mine in Nubia together with indications of the local geology. The primitive working methods are described by both Strabo and Diodorus Siculus, and included fire-setting. Large mines were also present across the Red Sea in what is now Saudi Arabia.

Ancient golden Kritonios Crown, funerary or marriage material, 370–360 BC; from a grave in Armento, Basilicata

Gold is mentioned in the Amarna letters numbered 19 and 26 from around the 14th century BC.

Gold is mentioned frequently in the Old Testament, starting with Genesis 2:11 (at Havilah), the story of the golden calf, and many parts of the temple including the Menorah and the golden altar. In the New Testament, it is included with the gifts of the magi in the first chapters of Matthew. The Book of Revelation 21:21 describes the city of New Jerusalem as having streets "made of pure gold, clear as crystal". Exploitation of gold in the south-east corner of the Black Sea is said to date from the time of Midas, and this gold was important in the establishment of what is probably the world's earliest coinage in Lydia around 610 BC. The legend of the golden fleece dating from eighth century BCE may refer to the use of fleeces to trap gold dust from placer deposits in the ancient world. From the 6th or 5th century BC, the Chu (state) circulated the Ying Yuan, one kind of square gold coin.

In Roman metallurgy, new methods for extracting gold on a large scale were developed by introducing hydraulic mining methods, especially in Hispania from 25 BC onwards and in Dacia from 106 AD onwards. One of their largest mines was at Las Medulas in León, where seven long aqueducts enabled them to sluice most of a large alluvial deposit. The mines at Roşia Montană in Transylvania were also very large, and until very recently, still mined by opencast methods. They also exploited smaller deposits in Britain, such as placer and hard-rock deposits at Dolaucothi. The various methods they used are well described by Pliny the Elder in his encyclopedia Naturalis Historia written towards the end of the first century AD.

During Mansa Musa's (ruler of the Mali Empire from 1312 to 1337) hajj to Mecca in 1324, he passed through Cairo in July 1324, and was reportedly accompanied by a camel train that included thousands of people and nearly a hundred camels where he gave away so much gold that it depressed the price in Egypt for over a decade, causing high inflation. A contemporary Arab historian remarked:

Gold was at a high price in Egypt until they came in that year. The mithqal did not go below 25 dirhams and was generally above, but from that time its value fell and it cheapened in price and has remained cheap till now. The mithqal does not exceed 22 dirhams or less. This has been the state of affairs for about twelve years until this day by reason of the large amount of gold which they brought into Egypt and spent there .

— Chihab Al-Umari, Kingdom of Mali
Gold coin of Eucratides I (171–145 BC), one of the Hellenistic rulers of ancient Ai-Khanoum. This is the largest known gold coin minted in antiquity (169.2 g (5.97 oz); 58 mm (2.3 in)).

The European exploration of the Americas was fueled in no small part by reports of the gold ornaments displayed in great profusion by Native American peoples, especially in Mesoamerica, Peru, Ecuador and Colombia. The Aztecs regarded gold as the product of the gods, calling it literally "god excrement" (teocuitlatl in Nahuatl), and after Moctezuma II was killed, most of this gold was shipped to Spain. However, for the indigenous peoples of North America gold was considered useless and they saw much greater value in other minerals which were directly related to their utility, such as obsidian, flint, and slate.

El Dorado is applied to a legendary story in which precious stones were found in fabulous abundance along with gold coins. The concept of El Dorado underwent several transformations, and eventually accounts of the previous myth were also combined with those of a legendary lost city. El Dorado, was the term used by the Spanish Empire to describe a mythical tribal chief (zipa) of the Muisca native people in Colombia, who, as an initiation rite, covered himself with gold dust and submerged in Lake Guatavita. The legends surrounding El Dorado changed over time, as it went from being a man, to a city, to a kingdom, and then finally to an empire.

Beginning in the early modern period, European exploration and colonization of West Africa was driven in large part by reports of gold deposits in the region, which was eventually referred to by Europeans as the "Gold Coast". From the late 15th to early 19th centuries, European trade in the region was primarily focused in gold, along with ivory and slaves. The gold trade in West Africa was dominated by the Ashanti Empire, who initially traded with the Portuguese before branching out and trading with British, French, Spanish and Danish merchants. British desires to secure control of West African gold deposits played a role in the Anglo-Ashanti wars of the late 19th century, which saw the Ashanti Empire annexed by Britain.

Gold played a role in western culture, as a cause for desire and of corruption, as told in children's fables such as Rumpelstiltskin—where Rumpelstiltskin turns hay into gold for the peasant's daughter in return for her child when she becomes a princess—and the stealing of the hen that lays golden eggs in Jack and the Beanstalk.

The top prize at the Olympic Games and many other sports competitions is the gold medal.

75% of the presently accounted for gold has been extracted since 1910, two-thirds since 1950.

One main goal of the alchemists was to produce gold from other substances, such as lead — presumably by the interaction with a mythical substance called the philosopher's stone. Trying to produce gold led the alchemists to systematically find out what can be done with substances, and this laid the foundation for today's chemistry, which can produce gold (albeit uneconomically) by using nuclear transmutation. Their symbol for gold was the circle with a point at its center (☉), which was also the astrological symbol and the ancient Chinese character for the Sun.

The Dome of the Rock is covered with an ultra-thin golden glassier. The Sikh Golden temple, the Harmandir Sahib, is a building covered with gold. Similarly the Wat Phra Kaew emerald Buddhist temple (wat) in Thailand has ornamental gold-leafed statues and roofs. Some European king and queen's crowns were made of gold, and gold was used for the bridal crown since antiquity. An ancient Talmudic text circa 100 AD describes Rachel, wife of Rabbi Akiva, receiving a "Jerusalem of Gold" (diadem). A Greek burial crown made of gold was found in a grave circa 370 BC.

Etymology

An early mention of gold in the Beowulf

Gold is cognate with similar words in many Germanic languages, deriving via Proto-Germanic *gulþą from Proto-Indo-European *ǵʰelh₃- 'to shine, to gleam; to be yellow or green'.

The symbol Au is from the Latin aurum 'gold'. The Proto-Indo-European ancestor of aurum was *h₂é-h₂us-o-, meaning 'glow'. This word is derived from the same root (Proto-Indo-European *h₂u̯es- 'to dawn') as *h₂éu̯sōs, the ancestor of the Latin word aurora 'dawn'. This etymological relationship is presumably behind the frequent claim in scientific publications that aurum meant 'shining dawn'.

Culture

Gold crafts from the Philippines prior to Western contact

In popular culture gold is a high standard of excellence, often used in awards. Great achievements are frequently rewarded with gold, in the form of gold medals, gold trophies and other decorations. Winners of athletic events and other graded competitions are usually awarded a gold medal. Many awards such as the Nobel Prize are made from gold as well. Other award statues and prizes are depicted in gold or are gold plated (such as the Academy Awards, the Golden Globe Awards, the Emmy Awards, the Palme d'Or, and the British Academy Film Awards).

Aristotle in his ethics used gold symbolism when referring to what is now known as the golden mean. Similarly, gold is associated with perfect or divine principles, such as in the case of the golden ratio and the Golden Rule. Gold is further associated with the wisdom of aging and fruition. The fiftieth wedding anniversary is golden. A person's most valued or most successful latter years are sometimes considered "golden years" or "golden jubilee". The height of a civilization is referred to as a golden age.

Religion

The Agusan image, depicting a deity from northeast Mindanao

The first known prehistoric human usages of gold were religious in nature.

In some forms of Christianity and Judaism, gold has been associated both with the sacred and evil. In the Book of Exodus, the Golden Calf is a symbol of idolatry, while in the Book of Genesis, Abraham was said to be rich in gold and silver, and Moses was instructed to cover the Mercy Seat of the Ark of the Covenant with pure gold. In Byzantine iconography the halos of Christ, Virgin Mary and the saints are often golden.

In Islam, gold (along with silk) is often cited as being forbidden for men to wear. Abu Bakr al-Jazaeri, quoting a hadith, said that "he wearing of silk and gold are forbidden on the males of my nation, and they are lawful to their women". This, however, has not been enforced consistently throughout history, e.g. in the Ottoman Empire. Further, small gold accents on clothing, such as in embroidery, may be permitted.

In ancient Greek religion and mythology, Theia was seen as the goddess of gold, silver and other gemstones.

According to Christopher Columbus, those who had something of gold were in possession of something of great value on Earth and a substance to even help souls to paradise.

Wedding rings are typically made of gold. It is long lasting and unaffected by the passage of time and may aid in the ring symbolism of eternal vows before God and the perfection the marriage signifies. In Orthodox Christian wedding ceremonies, the wedded couple is adorned with a golden crown (though some opt for wreaths, instead) during the ceremony, an amalgamation of symbolic rites.

On 24 August 2020, Israeli archaeologists discovered a trove of early Islamic gold coins near the central city of Yavne. Analysis of the extremely rare collection of 425 gold coins indicated that they were from the late 9th century. Dating to around 1,100 years back, the gold coins were from the Abbasid Caliphate.

Production

Main article: List of countries by gold production
Time trend of gold production

According to the United States Geological Survey in 2016, about 5,726,000,000 troy ounces (178,100 t) of gold has been accounted for, of which 85% remains in active use.

Mining and prospecting

Main articles: Gold mining and Gold prospecting
A miner underground at Pumsaint gold mine, Wales; c. 1938.
Grasberg mine, Indonesia is the world's largest gold mine.

Since the 1880s, South Africa has been the source of a large proportion of the world's gold supply, and about 22% of the gold presently accounted is from South Africa. Production in 1970 accounted for 79% of the world supply, about 1,480 tonnes. In 2007 China (with 276 tonnes) overtook South Africa as the world's largest gold producer, the first time since 1905 that South Africa had not been the largest.

In 2023, China was the world's leading gold-mining country, followed in order by Russia, Australia, Canada, the United States and Ghana.

Relative sizes of an 860 kg (1,900 lb) block of gold ore and the 30 g (0.96 ozt) of gold that can be extracted from it, Toi gold mine, Japan.

In South America, the controversial project Pascua Lama aims at exploitation of rich fields in the high mountains of Atacama Desert, at the border between Chile and Argentina.

It has been estimated that up to one-quarter of the yearly global gold production originates from artisanal or small scale mining.

The city of Johannesburg located in South Africa was founded as a result of the Witwatersrand Gold Rush which resulted in the discovery of some of the largest natural gold deposits in recorded history. The gold fields are confined to the northern and north-western edges of the Witwatersrand basin, which is a 5–7 km (3.1–4.3 mi) thick layer of archean rocks located, in most places, deep under the Free State, Gauteng and surrounding provinces. These Witwatersrand rocks are exposed at the surface on the Witwatersrand, in and around Johannesburg, but also in isolated patches to the south-east and south-west of Johannesburg, as well as in an arc around the Vredefort Dome which lies close to the center of the Witwatersrand basin. From these surface exposures the basin dips extensively, requiring some of the mining to occur at depths of nearly 4,000 m (13,000 ft), making them, especially the Savuka and TauTona mines to the south-west of Johannesburg, the deepest mines on Earth. The gold is found only in six areas where archean rivers from the north and north-west formed extensive pebbly Braided river deltas before draining into the "Witwatersrand sea" where the rest of the Witwatersrand sediments were deposited.

The Second Boer War of 1899–1901 between the British Empire and the Afrikaner Boers was at least partly over the rights of miners and possession of the gold wealth in South Africa.

Gold prospecting at the Ivalo River in the Finnish Lapland in 1898

During the 19th century, gold rushes occurred whenever large gold deposits were discovered. The first documented discovery of gold in the United States was at the Reed Gold Mine near Georgeville, North Carolina in 1803. The first major gold strike in the United States occurred in a small north Georgia town called Dahlonega. Further gold rushes occurred in California, Colorado, the Black Hills, Otago in New Zealand, a number of locations across Australia, Witwatersrand in South Africa, and the Klondike in Canada.

Grasberg mine located in Papua, Indonesia is the largest gold mine in the world.

Extraction and refining

Main article: Gold extraction
Gold Nuggets found in Arizona.

Gold extraction is most economical in large, easily mined deposits. Ore grades as little as 0.5 parts per million (ppm) can be economical. Typical ore grades in open-pit mines are 1–5 ppm; ore grades in underground or hard rock mines are usually at least 3 ppm. Because ore grades of 30 ppm are usually needed before gold is visible to the naked eye, in most gold mines the gold is invisible.

The average gold mining and extraction costs were about $317 per troy ounce in 2007, but these can vary widely depending on mining type and ore quality; global mine production amounted to 2,471.1 tonnes.

After initial production, gold is often subsequently refined industrially by the Wohlwill process which is based on electrolysis or by the Miller process, that is chlorination in the melt. The Wohlwill process results in higher purity, but is more complex and is only applied in small-scale installations. Other methods of assaying and purifying smaller amounts of gold include parting and inquartation as well as cupellation, or refining methods based on the dissolution of gold in aqua regia.

Recycling

In 1997, recycled gold accounted for approximately 20% of the 2700 tons of gold supplied to the market. Jewelry companies such as Generation Collection and computer companies including Dell conduct recycling.

As of 2020, the amount of carbon dioxide CO2 produced in mining a kilogram of gold is 16 tonnes, while recycling a kilogram of gold produces 53 kilograms of CO2 equivalent. Approximately 30 percent of the global gold supply is recycled and not mined as of 2020.

Consumption

This article needs to be updated. Please help update this article to reflect recent events or newly available information. (May 2022)
Gold jewelry consumption by country (in tonnes)
Country 2009 2010 2011 2012 2013
 India 442.37 745.70 986.3 864 974
 China 376.96 428.00 921.5 817.5 1120.1
 United States 150.28 128.61 199.5 161 190
 Turkey 75.16 74.07 143 118 175.2
 Saudi Arabia 77.75 72.95 69.1 58.5 72.2
 Russia 60.12 67.50 76.7 81.9 73.3
 United Arab Emirates 67.60 63.37 60.9 58.1 77.1
 Egypt 56.68 53.43 36 47.8 57.3
 Indonesia 41.00 32.75 55 52.3 68
 United Kingdom 31.75 27.35 22.6 21.1 23.4
Other Persian Gulf Countries 24.10 21.97 22 19.9 24.6
 Japan 21.85 18.50 −30.1 7.6 21.3
 South Korea 18.83 15.87 15.5 12.1 17.5
 Vietnam 15.08 14.36 100.8 77 92.2
 Thailand 7.33 6.28 107.4 80.9 140.1
Total 1466.86 1770.71 2786.12 2477.7 3126.1
Other Countries 251.6 254.0 390.4 393.5 450.7
World Total 1718.46 2024.71 3176.52 2871.2 3576.8

The consumption of gold produced in the world is about 50% in jewelry, 40% in investments, and 10% in industry.

According to the World Gold Council, China was the world's largest single consumer of gold in 2013, overtaking India.

Pollution

Further information: Mercury cycle and International Cyanide Management Code

Gold production is associated with contribution to hazardous pollution.

Low-grade gold ore may contain less than one ppm gold metal; such ore is ground and mixed with sodium cyanide to dissolve the gold. Cyanide is a highly poisonous chemical, which can kill living creatures when exposed in minute quantities. Many cyanide spills from gold mines have occurred in both developed and developing countries which killed aquatic life in long stretches of affected rivers. Environmentalists consider these events major environmental disasters. Up to thirty tons of used ore can be dumped as waste for producing one troy ounce of gold. Gold ore dumps are the source of many heavy elements such as cadmium, lead, zinc, copper, arsenic, selenium and mercury. When sulfide-bearing minerals in these ore dumps are exposed to air and water, the sulfide transforms into sulfuric acid which in turn dissolves these heavy metals facilitating their passage into surface water and ground water. This process is called acid mine drainage. These gold ore dumps contain long-term, highly hazardous waste.

It was once common to use mercury to recover gold from ore, but today the use of mercury is largely limited to small-scale individual miners. Minute quantities of mercury compounds can reach water bodies, causing heavy metal contamination. Mercury can then enter into the human food chain in the form of methylmercury. Mercury poisoning in humans causes incurable brain function damage and severe retardation.

Gold extraction is also a highly energy-intensive industry, extracting ore from deep mines and grinding the large quantity of ore for further chemical extraction requires nearly 25 kWh of electricity per gram of gold produced.

Monetary use

Further information: History of money
Two golden 20 kr coins from the Scandinavian Monetary Union, which was based on a gold standard. The coin to the left is Swedish and the right one is Danish.

Gold has been widely used throughout the world as money, for efficient indirect exchange (versus barter), and to store wealth in hoards. For exchange purposes, mints produce standardized gold bullion coins, bars and other units of fixed weight and purity.

The first known coins containing gold were struck in Lydia, Asia Minor, around 600 BC. The talent coin of gold in use during the periods of Grecian history both before and during the time of the life of Homer weighed between 8.42 and 8.75 grams. From an earlier preference in using silver, European economies re-established the minting of gold as coinage during the thirteenth and fourteenth centuries.

Bills (that mature into gold coin) and gold certificates (convertible into gold coin at the issuing bank) added to the circulating stock of gold standard money in most 19th century industrial economies. In preparation for World War I the warring nations moved to fractional gold standards, inflating their currencies to finance the war effort. Post-war, the victorious countries, most notably Britain, gradually restored gold-convertibility, but international flows of gold via bills of exchange remained embargoed; international shipments were made exclusively for bilateral trades or to pay war reparations.

After World War II gold was replaced by a system of nominally convertible currencies related by fixed exchange rates following the Bretton Woods system. Gold standards and the direct convertibility of currencies to gold have been abandoned by world governments, led in 1971 by the United States' refusal to redeem its dollars in gold. Fiat currency now fills most monetary roles. Switzerland was the last country to tie its currency to gold; this was ended by a referendum in 1999.

A gold vault at the Federal Reserve Bank of New York

Central banks continue to keep a portion of their liquid reserves as gold in some form, and metals exchanges such as the London Bullion Market Association still clear transactions denominated in gold, including future delivery contracts. Today, gold mining output is declining. With the sharp growth of economies in the 20th century, and increasing foreign exchange, the world's gold reserves and their trading market have become a small fraction of all markets and fixed exchange rates of currencies to gold have been replaced by floating prices for gold and gold future contract. Though the gold stock grows by only 1% or 2% per year, very little metal is irretrievably consumed. Inventory above ground would satisfy many decades of industrial and even artisan uses at current prices.

The gold proportion (fineness) of alloys is measured by karat (k). Pure gold (commercially termed fine gold) is designated as 24 karat, abbreviated 24k. English gold coins intended for circulation from 1526 into the 1930s were typically a standard 22k alloy called crown gold, for hardness (American gold coins for circulation after 1837 contain an alloy of 0.900 fine gold, or 21.6 kt).

Although the prices of some platinum group metals can be much higher, gold has long been considered the most desirable of precious metals, and its value has been used as the standard for many currencies. Gold has been used as a symbol for purity, value, royalty, and particularly roles that combine these properties. Gold as a sign of wealth and prestige was ridiculed by Thomas More in his treatise Utopia. On that imaginary island, gold is so abundant that it is used to make chains for slaves, tableware, and lavatory seats. When ambassadors from other countries arrive, dressed in ostentatious gold jewels and badges, the Utopians mistake them for menial servants, paying homage instead to the most modestly dressed of their party.

The ISO 4217 currency code of gold is XAU. Many holders of gold store it in form of bullion coins or bars as a hedge against inflation or other economic disruptions, though its efficacy as such has been questioned; historically, it has not proven itself reliable as a hedging instrument. Modern bullion coins for investment or collector purposes do not require good mechanical wear properties; they are typically fine gold at 24k, although the American Gold Eagle and the British gold sovereign continue to be minted in 22k (0.92) metal in historical tradition, and the South African Krugerrand, first released in 1967, is also 22k (0.92).

The special issue Canadian Gold Maple Leaf coin contains the highest purity gold of any bullion coin, at 99.999% or 0.99999, while the popular issue Canadian Gold Maple Leaf coin has a purity of 99.99%. In 2006, the United States Mint began producing the American Buffalo gold bullion coin with a purity of 99.99%. The Australian Gold Kangaroos were first coined in 1986 as the Australian Gold Nugget but changed the reverse design in 1989. Other modern coins include the Austrian Vienna Philharmonic bullion coin and the Chinese Gold Panda.

Price

Further information: Gold as an investment
Gold price history in 1960–2020.

Like other precious metals, gold is measured by troy weight and by grams. The proportion of gold in the alloy is measured by karat (k), with 24 karat (24k) being pure gold (100%), and lower karat numbers proportionally less (18k = 75%). The purity of a gold bar or coin can also be expressed as a decimal figure ranging from 0 to 1, known as the millesimal fineness, such as 0.995 being nearly pure.

The price of gold is determined through trading in the gold and derivatives markets, but a procedure known as the Gold Fixing in London, originating in September 1919, provides a daily benchmark price to the industry. The afternoon fixing was introduced in 1968 to provide a price when US markets are open. As of September 2017, gold was valued at around $42 per gram ($1,300 per troy ounce).

History

Historically gold coinage was widely used as currency; when paper money was introduced, it typically was a receipt redeemable for gold coin or bullion. In a monetary system known as the gold standard, a certain weight of gold was given the name of a unit of currency. For a long period, the United States government set the value of the US dollar so that one troy ounce was equal to $20.67 ($0.665 per gram), but in 1934 the dollar was devalued to $35.00 per troy ounce ($0.889/g). By 1961, it was becoming hard to maintain this price, and a pool of US and European banks agreed to manipulate the market to prevent further currency devaluation against increased gold demand.

The largest gold depository in the world is that of the U.S. Federal Reserve Bank in New York, which holds about 3% of the gold known to exist and accounted for today, as does the similarly laden U.S. Bullion Depository at Fort Knox. In 2005 the World Gold Council estimated total global gold supply to be 3,859 tonnes and demand to be 3,754 tonnes, giving a surplus of 105 tonnes.

After 15 August 1971 Nixon shock, the price began to greatly increase, and between 1968 and 2000 the price of gold ranged widely, from a high of $850 per troy ounce ($27.33/g) on 21 January 1980, to a low of $252.90 per troy ounce ($8.13/g) on 21 June 1999 (London Gold Fixing). Prices increased rapidly from 2001, but the 1980 high was not exceeded until 3 January 2008, when a new maximum of $865.35 per troy ounce was set. Another record price was set on 17 March 2008, at $1023.50 per troy ounce ($32.91/g).

On 2 December 2009, gold reached a new high closing at $1,217.23. Gold further rallied hitting new highs in May 2010 after the European Union debt crisis prompted further purchase of gold as a safe asset. On 1 March 2011, gold hit a new all-time high of $1432.57, based on investor concerns regarding ongoing unrest in North Africa as well as in the Middle East.

From April 2001 to August 2011, spot gold prices more than quintupled in value against the US dollar, hitting a new all-time high of $1,913.50 on 23 August 2011, prompting speculation that the long secular bear market had ended and a bull market had returned. However, the price then began a slow decline towards $1200 per troy ounce in late 2014 and 2015.

In August 2020, the gold price picked up to US$2060 per ounce after a total growth of 59% from August 2018 to October 2020, a period during which it outplaced the Nasdaq total return of 54%.

Gold futures are traded on the COMEX exchange. These contacts are priced in USD per troy ounce (1 troy ounce = 31.1034768 grams). Below are the CQG contract specifications outlining the futures contracts:

Contract Specifications
Gold (GCA)
Exchange: COMEX
Sector: Metal
Tick Size: 0.1
Tick Value: 10 USD
BPV: 100
Denomination: USD
Decimal Place: 1

Other applications

Jewelry

Moche gold necklace depicting feline heads. Larco Museum Collection, Lima, Peru.
A 21.5k yellow gold pendant watch so-called "Boule de Genève" (Geneva ball), c. 1890.

Because of the softness of pure (24k) gold, it is usually alloyed with other metals for use in jewelry, altering its hardness and ductility, melting point, color and other properties. Alloys with lower karat rating, typically 22k, 18k, 14k or 10k, contain higher percentages of copper, silver, palladium or other base metals in the alloy. Nickel is toxic, and its release from nickel white gold is controlled by legislation in Europe. Palladium-gold alloys are more expensive than those using nickel. High-karat white gold alloys are more resistant to corrosion than are either pure silver or sterling silver. The Japanese craft of Mokume-gane exploits the color contrasts between laminated colored gold alloys to produce decorative wood-grain effects.

By 2014, the gold jewelry industry was escalating despite a dip in gold prices. Demand in the first quarter of 2014 pushed turnover to $23.7 billion according to a World Gold Council report.

Gold solder is used for joining the components of gold jewelry by high-temperature hard soldering or brazing. If the work is to be of hallmarking quality, the gold solder alloy must match the fineness of the work, and alloy formulas are manufactured to color-match yellow and white gold. Gold solder is usually made in at least three melting-point ranges referred to as Easy, Medium and Hard. By using the hard, high-melting point solder first, followed by solders with progressively lower melting points, goldsmiths can assemble complex items with several separate soldered joints. Gold can also be made into thread and used in embroidery.

Electronics

Only 10% of the world consumption of new gold produced goes to industry, but by far the most important industrial use for new gold is in fabrication of corrosion-free electrical connectors in computers and other electrical devices. For example, according to the World Gold Council, a typical cell phone may contain 50 mg of gold, worth about three dollars. But since nearly one billion cell phones are produced each year, a gold value of US$2.82 in each phone adds to US$2.82 billion in gold from just this application. (Prices updated to November 2022)

Though gold is attacked by free chlorine, its good conductivity and general resistance to oxidation and corrosion in other environments (including resistance to non-chlorinated acids) has led to its widespread industrial use in the electronic era as a thin-layer coating on electrical connectors, thereby ensuring good connection. For example, gold is used in the connectors of the more expensive electronics cables, such as audio, video and USB cables. The benefit of using gold over other connector metals such as tin in these applications has been debated; gold connectors are often criticized by audio-visual experts as unnecessary for most consumers and seen as simply a marketing ploy. However, the use of gold in other applications in electronic sliding contacts in highly humid or corrosive atmospheres, and in use for contacts with a very high failure cost (certain computers, communications equipment, spacecraft, jet aircraft engines) remains very common.

Besides sliding electrical contacts, gold is also used in electrical contacts because of its resistance to corrosion, electrical conductivity, ductility and lack of toxicity. Switch contacts are generally subjected to more intense corrosion stress than are sliding contacts. Fine gold wires are used to connect semiconductor devices to their packages through a process known as wire bonding.

The concentration of free electrons in gold metal is 5.91×10 cm. Gold is highly conductive to electricity and has been used for electrical wiring in some high-energy applications (only silver and copper are more conductive per volume, but gold has the advantage of corrosion resistance). For example, gold electrical wires were used during some of the Manhattan Project's atomic experiments, but large high-current silver wires were used in the calutron isotope separator magnets in the project.

It is estimated that 16% of the world's presently-accounted-for gold and 22% of the world's silver is contained in electronic technology in Japan.

Medicine

Metallic and gold compounds have long been used for medicinal purposes. Gold, usually as the metal, is perhaps the most anciently administered medicine (apparently by shamanic practitioners) and known to Dioscorides. In medieval times, gold was often seen as beneficial for the health, in the belief that something so rare and beautiful could not be anything but healthy. Even some modern esotericists and forms of alternative medicine assign metallic gold a healing power.

In the 19th century gold had a reputation as an anxiolytic, a therapy for nervous disorders. Depression, epilepsy, migraine, and glandular problems such as amenorrhea and impotence were treated, and most notably alcoholism (Keeley, 1897).

The apparent paradox of the actual toxicology of the substance suggests the possibility of serious gaps in the understanding of the action of gold in physiology. Only salts and radioisotopes of gold are of pharmacological value, since elemental (metallic) gold is inert to all chemicals it encounters inside the body (e.g., ingested gold cannot be attacked by stomach acid). Some gold salts do have anti-inflammatory properties and at present two are still used as pharmaceuticals in the treatment of arthritis and other similar conditions in the US (sodium aurothiomalate and auranofin). These drugs have been explored as a means to help to reduce the pain and swelling of rheumatoid arthritis, and also (historically) against tuberculosis and some parasites.

Gold alloys are used in restorative dentistry, especially in tooth restorations, such as crowns and permanent bridges. The gold alloys' slight malleability facilitates the creation of a superior molar mating surface with other teeth and produces results that are generally more satisfactory than those produced by the creation of porcelain crowns. The use of gold crowns in more prominent teeth such as incisors is favored in some cultures and discouraged in others.

Colloidal gold preparations (suspensions of gold nanoparticles) in water are intensely red-colored, and can be made with tightly controlled particle sizes up to a few tens of nanometers across by reduction of gold chloride with citrate or ascorbate ions. Colloidal gold is used in research applications in medicine, biology and materials science. The technique of immunogold labeling exploits the ability of the gold particles to adsorb protein molecules onto their surfaces. Colloidal gold particles coated with specific antibodies can be used as probes for the presence and position of antigens on the surfaces of cells. In ultrathin sections of tissues viewed by electron microscopy, the immunogold labels appear as extremely dense round spots at the position of the antigen.

Gold, or alloys of gold and palladium, are applied as conductive coating to biological specimens and other non-conducting materials such as plastics and glass to be viewed in a scanning electron microscope. The coating, which is usually applied by sputtering with an argon plasma, has a triple role in this application. Gold's very high electrical conductivity drains electrical charge to earth, and its very high density provides stopping power for electrons in the electron beam, helping to limit the depth to which the electron beam penetrates the specimen. This improves definition of the position and topography of the specimen surface and increases the spatial resolution of the image. Gold also produces a high output of secondary electrons when irradiated by an electron beam, and these low-energy electrons are the most commonly used signal source used in the scanning electron microscope.

The isotope gold-198 (half-life 2.7 days) is used in nuclear medicine, in some cancer treatments and for treating other diseases.

Cuisine

Cake with edible gold decoration Cake with edible gold decoration
  • Gold can be used in food and has the E number 175. In 2016, the European Food Safety Authority published an opinion on the re-evaluation of gold as a food additive. Concerns included the possible presence of minute amounts of gold nanoparticles in the food additive, and that gold nanoparticles have been shown to be genotoxic in mammalian cells in vitro.
  • Gold leaf, flake or dust is used on and in some gourmet foods, notably sweets and drinks as decorative ingredient. Gold flake was used by the nobility in medieval Europe as a decoration in food and drinks,
  • Danziger Goldwasser (German: Gold water of Danzig) or Goldwasser (English: Goldwater) is a traditional German herbal liqueur produced in what is today Gdańsk, Poland, and Schwabach, Germany, and contains flakes of gold leaf. There are also some expensive (c. $1000) cocktails which contain flakes of gold leaf. However, since metallic gold is inert to all body chemistry, it has no taste, it provides no nutrition, and it leaves the body unaltered.
  • Vark is a foil composed of a pure metal that is sometimes gold, and is used for garnishing sweets in South Asian cuisine.

Miscellanea

A mirror segment for the James Webb Space Telescope coated in gold to reflect infrared light
Kamakshi Amman Temple with golden roof, Kanchipuram.
  • Gold produces a deep, intense red color when used as a coloring agent in cranberry glass.
  • In photography, gold toners are used to shift the color of silver bromide black-and-white prints towards brown or blue tones, or to increase their stability. Used on sepia-toned prints, gold toners produce red tones. Kodak published formulas for several types of gold toners, which use gold as the chloride.
  • Gold is a good reflector of electromagnetic radiation such as infrared and visible light, as well as radio waves. It is used for the protective coatings on many artificial satellites, in infrared protective faceplates in thermal-protection suits and astronauts' helmets, and in electronic warfare planes such as the EA-6B Prowler.
  • Gold is used as the reflective layer on some high-end CDs.
  • Automobiles may use gold for heat shielding. McLaren uses gold foil in the engine compartment of its F1 model.
  • Gold can be manufactured so thin that it appears semi-transparent. It is used in some aircraft cockpit windows for de-icing or anti-icing by passing electricity through it. The heat produced by the resistance of the gold is enough to prevent ice from forming.
  • Gold is attacked by and dissolves in alkaline solutions of potassium or sodium cyanide, to form the salt gold cyanide—a technique that has been used in extracting metallic gold from ores in the cyanide process. Gold cyanide is the electrolyte used in commercial electroplating of gold onto base metals and electroforming.
  • Gold chloride (chloroauric acid) solutions are used to make colloidal gold by reduction with citrate or ascorbate ions. Gold chloride and gold oxide are used to make cranberry or red-colored glass, which, like colloidal gold suspensions, contains evenly sized spherical gold nanoparticles.
  • Gold, when dispersed in nanoparticles, can act as a heterogeneous catalyst of chemical reactions.
  • In recent years, gold has been used as a symbol of pride by the autism rights movement, as its symbol Au could be seen as similar to the word "autism".

Toxicity

Pure metallic (elemental) gold is non-toxic and non-irritating when ingested and is sometimes used as a food decoration in the form of gold leaf. Metallic gold is also a component of the alcoholic drinks Goldschläger, Gold Strike, and Goldwasser. Metallic gold is approved as a food additive in the EU (E175 in the Codex Alimentarius). Although the gold ion is toxic, the acceptance of metallic gold as a food additive is due to its relative chemical inertness, and resistance to being corroded or transformed into soluble salts (gold compounds) by any known chemical process which would be encountered in the human body.

Soluble compounds (gold salts) such as gold chloride are toxic to the liver and kidneys. Common cyanide salts of gold such as potassium gold cyanide, used in gold electroplating, are toxic by virtue of both their cyanide and gold content. There are rare cases of lethal gold poisoning from potassium gold cyanide. Gold toxicity can be ameliorated with chelation therapy with an agent such as dimercaprol.

Gold metal was voted Allergen of the Year in 2001 by the American Contact Dermatitis Society; gold contact allergies affect mostly women. Despite this, gold is a relatively non-potent contact allergen, in comparison with metals like nickel.

A sample of the fungus Aspergillus niger was found growing from gold mining solution; and was found to contain cyano metal complexes, such as gold, silver, copper, iron and zinc. The fungus also plays a role in the solubilization of heavy metal sulfides.

See also

Iron pyrite or "fool's gold"

References

  1. "Standard Atomic Weights: Gold". CIAAW. 2017.
  2. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (4 May 2022). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. ^ Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
  4. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.
  5. Mézaille, Nicolas; Avarvari, Narcis; Maigrot, Nicole; Ricard, Louis; Mathey, François; Le Floch, Pascal; Cataldo, Laurent; Berclaz, Théo; Geoffroy, Michel (1999). "Gold(I) and Gold(0) Complexes of Phosphinine‐Based Macrocycles". Angewandte Chemie International Edition. 38 (21): 3194–3197. doi:10.1002/(SICI)1521-3773(19991102)38:21<3194::AID-ANIE3194>3.0.CO;2-O. PMID 10556900.
  6. Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  7. Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  8. Kelly, P. F. (2015). Properties of Materials. CRC Press. p. 355. ISBN 978-1-4822-0624-1.
  9. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  10. Duckenfield, Mark (2016). The Monetary History of Gold: A Documentary History, 1660–1999. Routledge. p. 4. ISBN 9781315476124. Its scarcity makes it a useful store of value; however, its relative rarity reduced its utility as a currency, especially for transactions in small denominations.
  11. Pearce, Susan M. (1993). Museums, Objects, and Collections: A Cultural Study. Smithsonian Books. p. 53. ISBN 9781588345172. Its scarcity makes it a useful store of value; however, its relative rarity reduced its utility as a currency, especially for transactions in small denominations. ... Rarity is, nevertheless, in itself a source of value, and so is the degree of difficulty which surrounds the winning of the raw material, especially if it is exotic and has to be brought some distance. Gold is, geologically, a relatively rare material on Earth and occurs only in specific places which are remote from most other places.
  12. ^ "Gold Production & Mining Data by Country". 7 June 2023.
  13. "Above-ground stocks". gold.org. Retrieved 18 October 2021.
  14. ^ Soos, Andy (6 January 2011). "Gold Mining Boom Increasing Mercury Pollution Risk". Advanced Media Solutions, Inc. Oilprice.com. Retrieved 26 March 2011.
  15. ^ Kizuka, Tokushi (1 April 2008). "Atomic configuration and mechanical and electrical properties of stable gold wires of single-atom width" (PDF). Physical Review B. 77 (15): 155401. Bibcode:2008PhRvB..77o5401K. doi:10.1103/PhysRevB.77.155401. hdl:2241/99261. ISSN 1098-0121. Archived (PDF) from the original on 16 July 2021.
  16. Che Lah, Nurul Akmal; Trigueros, Sonia (2019). "Synthesis and modelling of the mechanical properties of Ag, Au and Cu nanowires". Science and Technology of Advanced Materials. 20 (1): 225–261. Bibcode:2019STAdM..20..225L. doi:10.1080/14686996.2019.1585145. ISSN 1468-6996. PMC 6442207. PMID 30956731.
  17. "Gold: causes of color". Retrieved 6 June 2009.
  18. Mallan, Lloyd (1971). Suiting up for space: the evolution of the space suit. John Day Co. p. 216. ISBN 978-0-381-98150-1.
  19. Gray, Theo (14 March 2008). "How to Make Convincing Fake-Gold Bars". Popular Science. Retrieved 18 June 2008.
  20. Willie, Jim (18 November 2009) "Zinc Dimes, Tungsten Gold & Lost Respect Archived 8 October 2011 at the Wayback Machine". Kitco
  21. "Largest Private Refinery Discovers Gold-Plated Tungsten Bar | Coin Update". news.coinupdate.com.
  22. "Austrians Seize False Gold Tied to London Bullion Theft". The New York Times. 22 December 1983. Retrieved 25 March 2012.
  23. Arblaster, J. W. (1995). "Osmium, the Densest Metal Known" (PDF). Platinum Metals Review. 39 (4): 164. doi:10.1595/003214095X394164164. S2CID 267393021. Archived from the original (PDF) on 18 October 2016. Retrieved 14 October 2016.
  24. Encyclopædia of Chemistry, Theoretical, Practical, and Analytical, as Applied to the Arts and Manufacturers: Glass-zinc. J.B. Lippincott & Company. 1880. pp. 70–.
  25. "Relativity in Chemistry". Math.ucr.edu. Retrieved 5 April 2009.
  26. Schmidbaur, Hubert; Cronje, Stephanie; Djordjevic, Bratislav; Schuster, Oliver (2005). "Understanding gold chemistry through relativity". Chemical Physics. 311 (1–2): 151–161. Bibcode:2005CP....311..151S. doi:10.1016/j.chemphys.2004.09.023.
  27. ^ Jewellery Alloys. World Gold Council
  28. Electron Microscopy in Microbiology. Academic Press. 1988. ISBN 978-0-08-086049-7.
  29. "Nudat 2". National Nuclear Data Center. Retrieved 12 April 2012.
  30. ^ Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  31. Miethe, A. (1924). "Der Zerfall des Quecksilberatoms". Die Naturwissenschaften. 12 (29): 597–598. Bibcode:1924NW.....12..597M. doi:10.1007/BF01505547. S2CID 35613814.
  32. Sherr, R.; Bainbridge, K. T. & Anderson, H. H. (1941). "Transmutation of Mercury by Fast Neutrons". Physical Review. 60 (7): 473–479. Bibcode:1941PhRv...60..473S. doi:10.1103/PhysRev.60.473.
  33. Aleklett, K.; Morrissey, D.; Loveland, W.; McGaughey, P.; Seaborg, G. (1981). "Energy dependence of Bi fragmentation in relativistic nuclear collisions". Physical Review C. 23 (3): 1044. Bibcode:1981PhRvC..23.1044A. doi:10.1103/PhysRevC.23.1044.
  34. Matthews, Robert (2 December 2001). "The Philosopher's Stone". The Daily Telegraph. Retrieved 22 September 2020.
  35. Shipman, James; Wilson, Jerry D.; Higgins, Charles A. (2012). An Introduction to Physical Science (13th ed.). Cengage Learning. p. 273. ISBN 9781133709497.
  36. Hammer, B.; Norskov, J. K. (1995). "Why gold is the noblest of all the metals". Nature. 376 (6537): 238–240. Bibcode:1995Natur.376..238H. doi:10.1038/376238a0. S2CID 4334587.
  37. Johnson, P. B.; Christy, R. W. (1972). "Optical Constants of the Noble Metals". Physical Review B. 6 (12): 4370–4379. Bibcode:1972PhRvB...6.4370J. doi:10.1103/PhysRevB.6.4370.
  38. Shaw III, C. F. (1999). "Gold-Based Medicinal Agents". Chemical Reviews. 99 (9): 2589–2600. doi:10.1021/cr980431o. PMID 11749494.
  39. "Chemistry of Oxygen". Chemwiki UC Davis. 2 October 2013. Archived from the original on 14 July 2016. Retrieved 1 May 2016.
  40. Craig, B. D.; Anderson, D. B., eds. (1995). Handbook of Corrosion Data. Materials Park, Ohio: ASM International. p. 587. ISBN 978-0-87170-518-1.
  41. Wiberg, Egon; Wiberg, Nils & Holleman, Arnold Frederick (2001). Inorganic Chemistry (101st ed.). Academic Press. p. 1286. ISBN 978-0-12-352651-9.
  42. Wiberg, Egon; Wiberg, Nils (2001). Inorganic Chemistry. Academic Press. p. 404. ISBN 978-0-12-352651-9.
  43. Wiberg, Wiberg & Holleman 2001, pp. 1286–1287
  44. ^ Emery, J. F.; Ledditcotte, G. W. (May 1961). "Nuclear Science Series (NAS-NS 3036) The Radio Chemistry of Gold" (PDF). Oak Ridge, TN: National Academy of Sciences — National Research Council — Subcommittee on Radio Chemistry. US Atomic Energy Commission. Archived (PDF) from the original on 10 November 2004. Retrieved 24 February 2021.
  45. Wolfgang Jeitschko; Manfred H. Moller (1979). "The crystal structures of Au2P3 and Au7P10I, polyphosphides with weak Au–Au interactions". Acta Crystallographica B. 35 (3): 573–579. Bibcode:1979AcCrB..35..573J. doi:10.1107/S0567740879004180.
  46. Jansen, Martin (2005). "Effects of relativistic motion of electrons on the chemistry of gold and platinum". Solid State Sciences. 7 (12): 1464–1474. Bibcode:2005SSSci...7.1464J. doi:10.1016/j.solidstatesciences.2005.06.015.
  47. ^ Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 978-0-12-352651-9.
  48. ^ Jansen, Martin (2008). "The chemistry of gold as an anion". Chemical Society Reviews. 37 (9): 1826–1835. doi:10.1039/b708844m. PMID 18762832.
  49. Jung, Jaehoon; Kim, Hyemi; Kim, Jong Chan; Park, Min Hee; Han, Young-Kyu (2011). "Gold Behaves as Hydrogen in the Intermolecular Self-Interaction of Metal Aurides MAu4 (M=Ti, Zr, and Hf)". Chemistry: An Asian Journal. 6 (3): 868–872. doi:10.1002/asia.201000742. PMID 21225974.
  50. Wickleder, Mathias S. (2001). "AuSO4: A True Gold(II) Sulfate with an Au2 Ion". Journal of Inorganic and General Chemistry. 627 (9): 2112–2114. doi:10.1002/1521-3749(200109)627:9<2112::AID-ZAAC2112>3.0.CO;2-2.
  51. Wickleder, Mathias S. (2007). Devillanova, Francesco A. (ed.). Handbook of chalcogen chemistry: new perspectives in sulfur, selenium and tellurium. Royal Society of Chemistry. pp. 359–361. ISBN 978-0-85404-366-8.
  52. Seidel, S.; Seppelt, K. (2000). "Xenon as a Complex Ligand: The Tetra Xenono Gold(II) Cation in AuXe4(Sb2F11)2". Science. 290 (5489): 117–118. Bibcode:2000Sci...290..117S. doi:10.1126/science.290.5489.117. PMID 11021792.
  53. University, Stanford. "Striking rare gold: Researchers unveil new material infused with gold in an exotic chemical state". phys.org. Retrieved 2 October 2023.
  54. Riedel, S.; Kaupp, M. (2006). "Revising the Highest Oxidation States of the 5d Elements: The Case of Iridium(+VII)". Angewandte Chemie International Edition. 45 (22): 3708–3711. doi:10.1002/anie.200600274. PMID 16639770.
  55. "Earth's Gold Came from Colliding Dead Stars". David A. Aguilar & Christine Pulliam. cfa.harvard.edu. 17 July 2013. Retrieved 18 February 2018.
  56. Seeger, Philip A.; Fowler, William A.; Clayton, Donald D. (1965). "Nucleosynthesis of Heavy Elements by Neutron Capture". The Astrophysical Journal Supplement Series. 11: 121. Bibcode:1965ApJS...11..121S. doi:10.1086/190111.
  57. "Supernovas & Supernova Remnants". Chandra X-ray Observatory. Retrieved 28 February 2014.
  58. Berger, E.; Fong, W.; Chornock, R. (2013). "An r-process Kilonova Associated with the Short-hard GRB 130603B". The Astrophysical Journal Letters. 774 (2): 4. arXiv:1306.3960. Bibcode:2013ApJ...774L..23B. doi:10.1088/2041-8205/774/2/L23. S2CID 669927.
  59. "we have no spectroscopic evidence that elements have truly been produced," wrote author Stephan Rosswog.Rosswog, Stephan (29 August 2013). "Astrophysics: Radioactive glow as a smoking gun". Nature. 500 (7464): 535–536. Bibcode:2013Natur.500..535R. doi:10.1038/500535a. PMID 23985867. S2CID 4401544.
  60. "LIGO and Virgo make first detection of gravitational waves produced by colliding neutron stars" (PDF). LIGO & Virgo collaborations. 16 October 2017. Archived (PDF) from the original on 31 October 2017. Retrieved 15 February 2018.
  61. "Neutron star mergers may create much of the universe's gold". Sid Perkins. Science AAAS. 20 March 2018. Retrieved 24 March 2018.
  62. Willbold, Matthias; Elliott, Tim; Moorbath, Stephen (2011). "The tungsten isotopic composition of the Earth's mantle before the terminal bombardment". Nature. 477 (7363): 195–8. Bibcode:2011Natur.477..195W. doi:10.1038/nature10399. PMID 21901010. S2CID 4419046.
  63. Battison, Leila (8 September 2011). "Meteorites delivered gold to Earth". BBC.
  64. "Mangalisa Project". Superior Mining International Corporation. Retrieved 29 December 2014.
  65. Therriault, A. M.; Grieve, R. A. F. & Reimold, W. U. (1997). "Original size of the Vredefort Structure: Implications for the geological evolution of the Witwatersrand Basin". Meteoritics. 32: 71–77. Bibcode:1997M&PS...32...71T. doi:10.1111/j.1945-5100.1997.tb01242.x.
  66. Meteor craters may hold untapped wealth. Cosmos Magazine (28 July 2008). Retrieved on 12 September 2013.
  67. Corner, B.; Durrheim, R. J.; Nicolaysen, L. O. (1990). "Relationships between the Vredefort structure and the Witwatersrand basin within the tectonic framework of the Kaapvaal craton as interpreted from regional gravity and aeromagnetic data". Tectonophysics. 171 (1): 49–61. Bibcode:1990Tectp.171...49C. doi:10.1016/0040-1951(90)90089-Q.
  68. ^ McCarthy, T., Rubridge, B. (2005). The Story of Earth and Life. Struik Publishers, Cape Town. pp. 89–90, 102–107, 134–136. ISBN 1 77007 148 2
  69. ^ Norman, N., Whitfield, G. (2006) Geological Journeys. Struik Publishers, Cape Town. pp. 38–49, 60–61. ISBN 9781770070622
  70. University of Granada (21 November 2017). "Scientists reveal the mystery about the origin of gold". ScienceDaily. Retrieved 27 March 2018.
  71. Tassara, Santiago; González-Jiménez, José M.; Reich, Martin; Schilling, Manuel E.; Morata, Diego; Begg, Graham; Saunders, Edward; Griffin, William L.; O’Reilly, Suzanne Y.; Grégoire, Michel; Barra, Fernando; Corgne, Alexandre (2017). "Plume-subduction interaction forms large auriferous provinces". Nature Communications. 8 (1): 843. Bibcode:2017NatCo...8..843T. doi:10.1038/s41467-017-00821-z. ISSN 2041-1723. PMC 5634996. PMID 29018198.
  72. ^ La Niece, Susan (senior metallurgist in the British Museum Department of Conservation and Scientific Research) (15 December 2009). Gold. Harvard University Press. p. 10. ISBN 978-0-674-03590-4. Retrieved 10 April 2012.
  73. Heike, Brian. "Formation of Lode Gold Deposits". Arizona Gold Prospectors. Archived from the original on 22 January 2013. Retrieved 24 February 2021.
  74. "Environment & Nature News – Bugs grow gold that looks like coral". abc.net.au. 28 January 2004. Retrieved 22 July 2006. This is doctoral research undertaken by Frank Reith at the Australian National University, published 2004.
  75. "Earthquakes Turn Water into Gold". 17 March 2013. Retrieved 18 March 2013.
  76. Kenison Falkner, K.; Edmond, J. (1990). "Gold in seawater". Earth and Planetary Science Letters. 98 (2): 208–221. Bibcode:1990E&PSL..98..208K. doi:10.1016/0012-821X(90)90060-B.
  77. Plazak, Dan A Hole in the Ground with a Liar at the Top (Salt Lake: Univ. of Utah Press, 2006) ISBN 0-87480-840-5 (contains a chapter on gold-from seawater swindles)
  78. Haber, F. (1927). "Das Gold im Meerwasser". Zeitschrift für Angewandte Chemie. 40 (11): 303–314. Bibcode:1927AngCh..40..303H. doi:10.1002/ange.19270401103.
  79. McHugh, J. B. (1988). "Concentration of gold in natural waters". Journal of Geochemical Exploration. 30 (1–3): 85–94. Bibcode:1988JCExp..30...85M. doi:10.1016/0375-6742(88)90051-9. Archived from the original on 7 March 2020.
  80. "Furthermore the second member of Delegation XVIII is carrying four small but evidently heavy jars on a yoke, probably containing the gold dust which was the tribute paid by the Indians." in Iran, Délégation archéologique française en (1972). Cahiers de la Délégation archéologique française en Iran. Institut français de recherches en Iran (section archéologique). p. 146.
  81. Yannopoulos, J. C. (1991). The Extractive Metallurgy of Gold. Boston, MA: Springer US. pp. ix. doi:10.1007/978-1-4684-8425-0. ISBN 978-1-4684-8427-4.
  82. "Mystery of the Varna Gold: What Caused These Ancient Societies to Disappear?".
  83. "World's Oldest Gold Object May Have Just Been Unearthed in Bulgaria".
  84. Sutherland, C.H.V, Gold (London, Thames & Hudson, 1959) p 27 ff.
  85. Gopher, A.; Tsuk, T.; Shalev, S. & Gophna, R. (August–October 1990). "Earliest Gold Artifacts in the Levant". Current Anthropology. 31 (4): 436–443. doi:10.1086/203868. JSTOR 2743275. S2CID 143173212.
  86. Pohl, Walter L. (2011) Economic Geology Principles and Practice. Wiley. p. 208. doi:10.1002/9781444394870.ch2. ISBN 9781444394870
  87. Montserrat, Dominic (21 February 2003). Akhenaten: History, Fantasy and Ancient Egypt. Psychology Press. ISBN 978-0-415-30186-2.
  88. Moran, William L., 1987, 1992. The Amarna Letters, pp. 43–46.
  89. Moran, William L. 1987, 1992. The Amarna Letters. EA 245, "To the Queen Mother: Some Missing Gold Statues", pp. 84–86.
  90. "Akhenaten" Archived 11 June 2008 at the Wayback Machine. Encyclopaedia Britannica
  91. Dodson, Aidan and Hilton, Dyan (2004). The Complete Royal Families of Ancient Egypt. Thames & Hudson. ISBN 0-500-05128-3
  92. ^ "A Case for the World's Oldest Coin: Lydian Lion". Rg.ancients.info. 2 October 2003. Retrieved 27 October 2013.
  93. Mansa Musa. Black History Pages
  94. "Kingdom of Mali – Primary Source Documents". African studies Center. Boston University. Retrieved 30 January 2012.
  95. Monnaie, Eucratide I. (roi de Bactriane) Autorité émettrice de. [Monnaie : 20 Statères, Or, Incertain, Bactriane, Eucratide I].
  96. Berdan, Frances; Anawalt, Patricia Rieff (1992). The Codex Mendoza. Vol. 2. University of California Press. p. 151. ISBN 978-0-520-06234-4.
  97. Sierra Nevada Virtual Museum. Sierra Nevada Virtual Museum. Retrieved on 4 May 2012.
  98. Anderson, James Maxwell (2000). The History of Portugal. Greenwood Publishing Group. ISBN 0-313-31106-4.
  99. Newitt, Malyn (28 June 2010). The Portuguese in West Africa, 1415–1670: A Documentary History. Cambridge University Press. ISBN 978-1-139-49129-7.
  100. Green, Toby (31 January 2019). A fistful of shells : West Africa from the rise of the slave trade to the age of revolution (Penguin Books Ltd. Kindle-Version ed.). London. pp. 108, 247. ISBN 978-0-241-00328-2.{{cite book}}: CS1 maint: location missing publisher (link)
  101. Edgerton, Robert B. (2010). The Fall of the Asante Empire: The Hundred-Year War For Africa's Gold Coast. Simon and Schuster. ISBN 9781451603736.
  102. Matson, John (31 January 2014). "Fact or Fiction?: Lead Can Be Turned into Gold". scientificamerican.com. Retrieved 21 November 2021.
  103. La Niece, Susan (2009). Gold. The British Museum Press. p. 8. ISBN 978-0-7141-5076-5.
  104. La Niece, Susan (2009). Gold. The British Museum Press. p. 25. ISBN 978-0-7141-5076-5.
  105. La Niece, Susan (2009). Gold. The British Museum Press. p. 76. ISBN 978-0-7141-5076-5.
  106. La Niece, Susan (2009). Gold. The British Museum Press. p. 66. ISBN 978-0-7141-5076-5.
  107. La Niece, Susan (2009). Gold. The British Museum Press. p. 20. ISBN 978-0-7141-5076-5.
  108. "Tabatière". collections.louvre.fr. Retrieved 18 November 2023.
  109. "Tabatière ovale". collections.louvre.fr. Retrieved 18 November 2023.
  110. Harper, Douglas. "gold". Online Etymology Dictionary.
  111. Hesse, R W. (2007) Jewelrymaking Through History: An Encyclopedia Archived 1 November 2022 at the Wayback Machine, Greenwood Publishing Group. ISBN 0313335079
  112. Notre Dame University Latin Dictionary Archived 5 February 2016 at the Wayback Machine Retrieved 7 June 2012
  113. de Vaan, Michel (2008). Etymological Dictionary of Latin and the other Italic languages. Leiden: Boston: Brill. p. 63. ISBN 978-90-04-16797-1.
  114. Christie, A and Brathwaite, R. (Last updated 2 November 2011) Mineral Commodity Report 14 — Gold, Institute of geological and Nuclear sciences Ltd – Retrieved 7 June 2012
  115. H. G. Bachmann, The lure of gold : an artistic and cultural history (2006).
  116. Lubna Umar and Sarwet Rasul, "Critical Metaphor Analysis: Nawaz Sharif and the Myth of a Golden Time" NUML Journal of Critical Inquiry 15#2, (Dec 2017): 78–102.
  117. Lioudis, Nick (30 April 2023). "What Is the Gold Standard? Advantages, Alternatives, and History". Investopedia. Retrieved 21 September 2023.
  118. Alborn, Timothy (2017). "The Greatest Metaphor Ever Mixed: Gold in the British Bible, 1750–1850". Journal of the History of Ideas. 78 (3): 427–447. doi:10.1353/jhi.2017.0024. PMID 28757488. S2CID 27312741.
  119. Moors, Annelies (2013). "Wearing gold, owning gold: the multiple meanings of gold jewelry". Etnofoor. 25 (1): 78–89. ISSN 0921-5158. OCLC 858949147.
  120. Boulanouar, Aisha Wood (2011). Myths and Reality: Meaning in Moroccan Muslim Women's Dress (Thesis, Doctor of Philosophy). University of Otago. CiteSeerX 10.1.1.832.2031. hdl:10523/1748.
  121. Poonai, Anand (2015). "Islamic Male Clothing". Who We Are & What We Wear. Retrieved 17 June 2020.
  122. Aziz, Rookhsana (November 2010). "Hijab – The Islamic Dress Code: Its historical development, evidence from sacred sources and views of selected Muslim scholars". UNISA EDT (Electronic Theses and Dissertations) (Thesis, Master of Arts). University of South Africa. CiteSeerX 10.1.1.873.8651. hdl:10500/4888.
  123. Toronto, James A. (1 October 2001). "Many Voices, One Umma: Sociopolitical Debate in the Muslim Community". BYU Studies Quarterly. 40 (4): 29–50.
  124. Jirousek, Charlotte (2004). "Islamic Clothing". Encyclopedia of Islam. Retrieved 17 June 2020.
  125. Omar, Sara (28 March 2014). "Dress". The Encyclopedia of Islam and Law, Oxford Islamic Studies Online.
  126. Daly, Kathleen N.; Rengel, Marian (1992). Greek and Roman Mythology, A to Z. Chelsea House Publishers. p. 153. ISBN 978-1-60413-412-4.
  127. Bernstein, Peter L. (2004). The Power of Gold: The History of an Obsession. John Wiley & Sons. p. 1. ISBN 978-0-471-43659-1.
  128. "Israeli dig unearths large trove of early Islamic gold coins". Associated Press. 24 August 2020. Retrieved 24 August 2020.
  129. Munteen, John L.; Davis, David A.; Ayling, Bridget (2017). The Nevada Mineral Industry 2016 (PDF) (Report). University of Nevada, Reno. OCLC 1061602920. Archived from the original (PDF) on 9 February 2019. Retrieved 9 February 2019.
  130. Mandaro, Laura (17 January 2008). "China now world's largest gold producer; foreign miners at door". MarketWatch. Retrieved 5 April 2009.
  131. Fritz, Morgane; McQuilken, James; Collins, Nina; Weldegiorgis, Fitsum (January 2018). "Global Trends in Artisanal and Small-Scale Mining (ASM): A review of key numbers and issues" (PDF) (Report). Winnipeg Canada: International Institute for Sustainable Development. Retrieved 24 February 2021 – via Intergovernmental Forum on Mining, Minerals, Metals and Sustainable Development.
  132. "What is artisanal gold and why is it booming?". reuters.com. Reuters. 15 January 2020. Retrieved 24 February 2021.
  133. Beinhoff, Christian. "Removal of Barriers to the Abatement of Global Mercury Pollution from Artisanal Gold Mining" (PDF) (Report). Archived from the original (PDF) on 26 January 2016. Retrieved 29 December 2014.
  134. ^ Truswell, J.F. (1977). The Geological Evolution of South Africa. pp. 21–28. Purnell, Cape Town. ISBN 9780360002906
  135. Moore, Mark A. (2006). "Reed Gold Mine State Historic Site". North Carolina Office of Archives and History. Archived from the original on 15 January 2012. Retrieved 13 December 2008.
  136. Garvey, Jane A. (2006). "Road to adventure". Georgia Magazine. Archived from the original on 2 March 2007. Retrieved 23 January 2007.
  137. "Grasberg Open Pit, Indonesia". Mining Technology. Retrieved 16 October 2017.
  138. O'Connell, Rhona (13 April 2007). "Gold mine production costs up by 17% in 2006 while output fell". Archived from the original on 6 October 2014.
  139. Noyes, Robert (1993). Pollution prevention technology handbook. William Andrew. p. 342. ISBN 978-0-8155-1311-7.
  140. Pletcher, Derek & Walsh, Frank (1990). Industrial electrochemistry. Springer. p. 244. ISBN 978-0-412-30410-1.
  141. Marczenko, Zygmunt & Balcerzak, María (2000). Separation, preconcentration, and spectrophotometry in inorganic analysis. Elsevier. p. 210. ISBN 978-0-444-50524-8.
  142. Renner, Hermann; Schlamp, Günther; Hollmann, Dieter; Lüschow, Hans Martin; Tews, Peter; Rothaut, Josef; Dermann, Klaus; Knödler, Alfons; Hecht, Christian; Schlott, Martin; Drieselmann, Ralf; Peter, Catrin; Schiele, Rainer (2000). "Gold, Gold Alloys, and Gold Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a12_499. ISBN 3527306730.
  143. Paton, Elizabeth (23 April 2021). "Does Recycled Gold Herald a Greener Future for Jewelry?". The New York Times. ISSN 0362-4331. Archived from the original on 28 December 2021. Retrieved 17 May 2021.
  144. Baraniuk, Chris (27 October 2020). "Why it's getting harder to mine gold". BBC. Retrieved 29 October 2020.
  145. "Gold jewellery consumption by country". Reuters. 28 February 2011. Archived from the original on 12 January 2012.
  146. "Gold Demand Trends | Investment | World Gold Council". Gold.org. Retrieved 12 September 2013.
  147. "Gold Demand Trends". 12 November 2015.
  148. "Country wise gold demand". Retrieved 2 October 2015.
  149. Harjani, Ansuya (18 February 2014). "It's official: China overtakes India as top consumer of gold". CNBC. Retrieved 2 July 2014.
  150. Abdul-Wahab; Marikar, Fouzul (24 October 2011). "The environmental impact of gold mines: pollution by heavy metals". Central European Journal of Engineering. 2 (2): 304–313. Bibcode:2012CEJE....2..304A. doi:10.2478/s13531-011-0052-3. S2CID 3916088.
  151. Cyanide spills from gold mine compared to Chernobyl's nuclear disaster Archived 14 July 2018 at the Wayback Machine. Deseretnews.com (14 February 2000). Retrieved on 4 May 2012.
  152. Death of a river Archived 9 January 2009 at the Wayback Machine. BBC News (15 February 2000). Retrieved on 4 May 2012.
  153. Cyanide spill second only to Chernobyl Archived 25 May 2017 at the Wayback Machine. Abc.net.au. 11 February 2000. Retrieved on 4 May 2012.
  154. ^ Behind gold's glitter, torn lands and pointed questions Archived 8 April 2015 at the Wayback Machine, The New York Times, 24 October 2005
  155. "Pollution from Artisanal Gold Mining, Blacksmith Institute Report 2012" (PDF). Archived (PDF) from the original on 2 April 2015. Retrieved 22 September 2015.
  156. Wroblewski, William (12 January 2022). "'Babies here are born sick': are Bolivia's gold mines poisoning its indigenous people?". The Guardian. Retrieved 12 January 2022.
  157. Norgate, Terry; Haque, Nawshad (2012). "Using life cycle assessment to evaluate some environmental impacts of gold". Journal of Cleaner Production. 29–30: 53–63. doi:10.1016/j.jclepro.2012.01.042.
  158. Rothbard, Murray N. (2009). Man, Economy, and State, Scholar's Edition. Ludwig von Mises Institute. ISBN 978-1-933550-99-2.
  159. Seltman, C. T. (1924). Athens, Its History and Coinage Before the Persian Invasion. ISBN 978-0-87184-308-1. Retrieved 4 June 2012.
  160. Postan, M. M.; Miller, E. (1967). The Cambridge Economic History of Europe: Trade and industry in the Middle Ages. Cambridge University Press, 28 August 1987. ISBN 978-0-521-08709-4.
  161. "Swiss Narrowly Vote to Drop Gold Standard". The New York Times. 19 April 1999. Retrieved 1 July 2022.
  162. King, Byron (20 July 2009). "Gold mining decline". BullionVault.com. Archived from the original on 15 May 2016. Retrieved 23 November 2009.
  163. Lawrence, Thomas Edward (1948). The Mint: A Day-book of the R.A.F. Depot Between August and December 1922, with Later Notes. p. 103.
  164. Tucker, George (1839). The theory of money and banks investigated. C. C. Little and J. Brown.
  165. "Currency codes – ISO 4217". International Organization for Standardization. Retrieved 25 December 2014.
  166. Valenta, Philip (22 June 2018). "On hedging inflation with gold". Medium. Retrieved 30 November 2018.
  167. "The Ever Popular Krugerrand". americansilvereagletoday.com. 2010. Archived from the original on 3 February 2011. Retrieved 30 August 2011.
  168. "What Are the Different Purities of Sovereign Gold Coins?". goldsilver.com. Retrieved 29 March 2021.
  169. Warwick-Ching, Tony (28 February 1993). The International Gold Trade. Woodhead. p. 26. ISBN 978-1-85573-072-4.
  170. Elwell, Craig K. (2011). Brief History of the Gold Standard (GS) in the United States. DIANE. pp. 11–13. ISBN 978-1-4379-8889-5.
  171. Hitzer, Eckhard; Perwass, Christian (22 November 2006). "The hidden beauty of gold" (PDF). Proceedings of the International Symposium on Advanced Mechanical and Power Engineering 2007 (ISAMPE 2007) between Pukyong National University (Korea), University of Fukui (Japan) and University of Shanghai for Science and Technology (China), 22–25 November 2006, hosted by the University of Fukui (Japan), pp. 157–167. (Figs 15,16,17,23 revised.). Archived from the original (PDF) on 27 January 2012. Retrieved 10 May 2011.
  172. "World Gold Council > value > research & statistics > statistics > supply and demand statistics". Archived from the original on 19 July 2006. Retrieved 22 July 2006.
  173. "historical charts:gold – 1833–1999 yearly averages". kitco. Retrieved 30 June 2012.
  174. Kitco.com Archived 14 July 2018 at the Wayback Machine, Gold – London PM Fix 1975 – present (GIF), Retrieved 22 July 2006.
  175. ^ "LBMA statistics". Lbma.org.uk. 31 December 2008. Archived from the original on 10 February 2009. Retrieved 5 April 2009.
  176. "Gold hits yet another record high". BBC News. 2 December 2009. Retrieved 6 December 2009.
  177. "PRECIOUS METALS: Comex Gold Hits All-Time High". The Wall Street Journal. 11 May 2012. Retrieved 4 August 2010.
  178. Gibson, Kate; Chang, Sue (11 May 2010). "Gold futures hit closing record as investors fret rescue deal". MarketWatch. Retrieved 4 August 2010.
  179. Valetkevitch, Caroline (1 March 2011). "Gold hits record, oil jumps with Libya unrest". Reuters. Archived from the original on 15 October 2015. Retrieved 1 March 2011.
  180. Sim, Glenys (23 August 2011). "Gold Extends Biggest Decline in 18 Months After CME Raises Futures Margins". Bloomberg. Archived from the original on 10 January 2014. Retrieved 24 February 2021.
  181. "Financial Planning|Gold starts 2006 well, but this is not a 25-year high!". Ameinfo.com. Archived from the original on 21 April 2009. Retrieved 5 April 2009.
  182. Mandruzzato, GianLuigi (14 October 2020). "Gold, monetary policy and the US dollar". Archived from the original on 6 November 2020.
  183. ^ "Historical Gold Intraday Futures Data (GCA)". PortaraCQG. Retrieved 28 April 2022.
  184. "Troy Ounce". Investopedia. Retrieved 28 April 2022.
  185. Revere, Alan (1 May 1991). Professional goldsmithing: a contemporary guide to traditional jewelry techniques. Van Nostrand Reinhold. ISBN 978-0-442-23898-8.
  186. Uses of gold Archived 4 November 2014 at archive.today Accessed 4 November 2014
  187. Krech III, Shepard; Merchant, Carolyn; McNeill, John Robert, eds. (2004). Encyclopedia of World Environmental History. Vol. 2: F–N. Routledge. pp. 597–. ISBN 978-0-415-93734-4.
  188. "General Electric Contact Materials". Electrical Contact Catalog (Material Catalog). Tanaka Precious Metals. 2005. Archived from the original on 3 March 2001. Retrieved 21 February 2007.
  189. Fulay, Pradeep; Lee, Jung-Kun (2016). Electronic, Magnetic, and Optical Materials, Second Edition. CRC Press. ISBN 978-1-4987-0173-0.
  190. Peckham, James (23 August 2016). "Japan wants citizens to donate their old phone to make 2020 Olympics medals". TechRadar.
  191. Kean, W. F.; Kean, I. R. L. (2008). "Clinical pharmacology of gold". Inflammopharmacology. 16 (3): 112–25. doi:10.1007/s10787-007-0021-x. PMID 18523733. S2CID 808858.
  192. Moir, David Macbeth (1831). Outlines of the ancient history of medicine. William Blackwood. p. 225.
  193. Mortier, Tom. An experimental study on the preparation of gold nanoparticles and their properties Archived 5 October 2013 at the Wayback Machine, PhD thesis, University of Leuven (May 2006)
  194. Richards, Douglas G.; McMillin, David L.; Mein, Eric A. & Nelson, Carl D. (January 2002). "Gold and its relationship to neurological/glandular conditions". The International Journal of Neuroscience. 112 (1): 31–53. doi:10.1080/00207450212018. PMID 12152404. S2CID 41188687.
  195. Merchant, B. (1998). "Gold, the Noble Metal and the Paradoxes of its Toxicology". Biologicals. 26 (1): 49–59. doi:10.1006/biol.1997.0123. PMID 9637749.
  196. Messori, L.; Marcon, G. (2004). "Gold Complexes in the treatment of Rheumatoid Arthritis". In Sigel, Astrid (ed.). Metal ions and their complexes in medication. CRC Press. pp. 280–301. ISBN 978-0-8247-5351-1.
  197. Faulk, W. P.; Taylor, G. M. (1971). "An immunocolloid method for the electron microscope". Immunochemistry. 8 (11): 1081–3. doi:10.1016/0019-2791(71)90496-4. PMID 4110101.
  198. Roth, J.; Bendayan, M.; Orci, L. (1980). "FITC-protein A-gold complex for light and electron microscopic immunocytochemistry". Journal of Histochemistry and Cytochemistry. 28 (1): 55–7. doi:10.1177/28.1.6153194. PMID 6153194.
  199. Bozzola, John J. & Russell, Lonnie Dee (1999). Electron microscopy: principles and techniques for biologists. Jones & Bartlett Learning. p. 65. ISBN 978-0-7637-0192-5.
  200. "Nanoscience and Nanotechnology in Nanomedicine: Hybrid Nanoparticles In Imaging and Therapy of Prostate Cancer". Radiopharmaceutical Sciences Institute, University of Missouri-Columbia. Archived from the original on 14 March 2009.
  201. Hainfeld, James F.; Dilmanian, F. Avraham; Slatkin, Daniel N.; Smilowitz, Henry M. (2008). "Radiotherapy enhancement with gold nanoparticles". Journal of Pharmacy and Pharmacology. 60 (8): 977–85. doi:10.1211/jpp.60.8.0005. PMID 18644191. S2CID 32861131.
  202. "Current EU approved additives and their E Numbers". Food Standards Agency, UK. 27 July 2007.
  203. "Scientific Opinion on the re-evaluation of gold (E 175) as a food additive". EFSA Journal. 14 (1): 4362. 2016. doi:10.2903/j.efsa.2016.4362. ISSN 1831-4732.
  204. "The Food Dictionary: Varak". Barron's Educational Services, Inc. 1995. Archived from the original on 23 May 2006. Retrieved 27 May 2007.
  205. Kerner, Susanne; Chou, Cynthia; Warmind, Morten (2015). Commensality: From Everyday Food to Feast. Bloomsbury Publishing. p. 94. ISBN 978-0-85785-719-4.
  206. Baedeker, Karl (1865). "Danzig". Deutschland nebst Theilen der angrenzenden Länder (in German). Karl Baedeker.
  207. King, Hobart M. "The Many Uses of Gold". geology.com. Retrieved 6 June 2009.
  208. Gold in Gastronomy Archived 4 March 2016 at the Wayback Machine. deLafee, Switzerland (2008)
  209. Toning black-and-white materials. Kodak Technical Data/Reference sheet G-23, May 2006.
  210. Martin, Keith. 1997 McLaren F1.
  211. "The Demand for Gold by Industry" (PDF). Gold bulletin. Archived from the original (PDF) on 26 July 2011. Retrieved 6 June 2009.
  212. "Colored glass chemistry". Archived from the original on 13 February 2009. Retrieved 6 June 2009.
  213. "Why 'Going Gold' is important on Autism Acceptance Day". Edpsy. 2 April 2021.
  214. Dierks, S. (May 2005). "Gold MSDS". Electronic Space Products International. Archived from the original on 10 November 2006. Retrieved 21 December 2021.
  215. Louis, Catherine; Pluchery, Olivier (2012). Gold Nanoparticles for Physics, Chemistry and Biology. World Scientific. ISBN 978-1-84816-807-7.
  216. Wright, I. H.; Vesey, J. C. (1986). "Acute poisoning with gold cyanide". Anaesthesia. 41 (79): 936–939. doi:10.1111/j.1365-2044.1986.tb12920.x. PMID 3022615. S2CID 32434351.
  217. Wu, Ming-Ling; Tsai, Wei-Jen; Ger, Jiin; Deng, Jou-Fang; Tsay, Shyh-Haw; et al. (2001). "Cholestatic Hepatitis Caused by Acute Gold Potassium Cyanide Poisoning". Clinical Toxicology. 39 (7): 739–743. doi:10.1081/CLT-100108516. PMID 11778673. S2CID 44722156.
  218. Tsuruta, Kyoko; Matsunaga, Kayoko; Suzuki, Kayoko; Suzuki, Rie; Akita, Hirotaka; Washimi, Yasuko; Tomitaka, Akiko; Ueda, Hiroshi (2001). "Female predominance of gold allergy". Contact Dermatitis. 44 (1): 48–49. doi:10.1034/j.1600-0536.2001.440107-22.x. PMID 11156030. S2CID 42268840.
  219. Brunk, Doug (15 February 2008). "Ubiquitous nickel wins skin contact allergy award for 2008". Archived from the original on 24 June 2011.
  220. Singh, Harbhajan (2006). Mycoremediation: Fungal Bioremediation. John Wiley & Sons. p. 509. ISBN 978-0-470-05058-3.

Further reading

  • Bachmann, H. G. The lure of gold : an artistic and cultural history (2006) online
  • Bernstein, Peter L. The Power of Gold: The History of an Obsession (2000) online
  • Brands, H.W. The Age of Gold: The California Gold Rush and the New American Dream (2003) excerpt
  • Buranelli, Vincent. Gold : an illustrated history (1979) online' wide-ranging popular history
  • Cassel, Gustav. "The restoration of the gold standard." Economica 9 (1923): 171–185. online
  • Eichengreen, Barry. Golden Fetters: The Gold Standard and the Great Depression, 1919–1939 (Oxford UP, 1992).
  • Ferguson, Niall. The Ascent of Money – Financial History of the World (2009) online
  • Hart, Matthew, Gold: The Race for the World's Most Seductive Metal Gold : the race for the world's most seductive metal", New York: Simon & Schuster, 2013. ISBN 9781451650020
  • Johnson, Harry G. "The gold rush of 1968 in retrospect and prospect". American Economic Review 59.2 (1969): 344–348. online
  • Kwarteng, Kwasi. War and Gold: A Five-Hundred-Year History of Empires, Adventures, and Debt (2014) online
  • Vilar, Pierre. A History of Gold and Money, 1450–1920 (1960). online
  • Vilches, Elvira. New World Gold: Cultural Anxiety and Monetary Disorder in Early Modern Spain (2010).

External links

Periodic table
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
s-block f-block d-block p-block
Gold compounds
Gold(-I)
Gold(I)
Organogold(I) compounds
  • (AuC6H2(CH3)3)5
  • (C2H5)3PAuSC5H5O(CO2CH3)3CH2OCOCH3
  • AuSC5H5O(OH)3CH2OH
  • NaAuSCH2CHOHCH2SO3
  • BrAuSC4H8
  • ClAuSC4H8
  • ClAuS(CH3)2
  • ClAuP(C6H5)3
  • Na2AuSCHCO2CH2CO2
  • NaAuSCHCO2CH2CO2H
  • Gold(II)
    Gold(I,III)
    Gold(III)
    Aurates(III)
  • HAuCl4
  • NaAuCl4
  • HAuBr4
  • HAu(NO3)4
  • ClO2Au(ClO4)4
  • NaAuO2
  • Gold(V)
    Gold(VI)
    Jewellery
    Forms
    Making
    People
    Processes
    Tools
    Materials
    Precious metals
    Precious metal alloys
    Base metals
    Mineral gemstones
    Organic gemstones
    Other natural objects
    Terms
    Related topics
    Body piercing
    Fashion
    Gemology
    Metalworking
    Phaleristics
    Wearable art
    Categories: