Misplaced Pages

Mercury(II) oxide: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 13:19, 18 June 2020 editFswitzer4 (talk | contribs)Extended confirmed users10,578 editsm Added FDA UNII← Previous edit Revision as of 21:46, 3 December 2020 edit undoMonkbot (talk | contribs)Bots3,695,952 editsm Task 18 (cosmetic): eval 8 templates: del empty params (28×);Tag: AWBNext edit →
Line 59: Line 59:
| FlashPt = Non-flammable | FlashPt = Non-flammable
| PEL = | PEL =
| LD50 = 18 mg/kg (oral, rat)<ref>{{cite web|url=http://chem.sis.nlm.nih.gov/chemidplus/rn/21908-53-2|title=ChemIDplus - 21908-53-2 - UKWHYYKOEPRTIC-UHFFFAOYSA-N - Mercuric oxide - Similar structures search, synonyms, formulas, resource links, and other chemical information.|first=Michael|last=Chambers|date=|website=chem.sis.nlm.nih.gov}}</ref> | LD50 = 18 mg/kg (oral, rat)<ref>{{cite web|url=http://chem.sis.nlm.nih.gov/chemidplus/rn/21908-53-2|title=ChemIDplus - 21908-53-2 - UKWHYYKOEPRTIC-UHFFFAOYSA-N - Mercuric oxide - Similar structures search, synonyms, formulas, resource links, and other chemical information.|first=Michael|last=Chambers|website=chem.sis.nlm.nih.gov}}</ref>
}} }}
|Section8={{Chembox Related |Section8={{Chembox Related
Line 73: Line 73:
{{See also|Maslama al-Majriti}} {{See also|Maslama al-Majriti}}


In 1774, ] discovered that oxygen was released by heating mercuric oxide, although he did not identify the gas as ] (rather, Priestley called it "] air," as that was the ] that he was working under at the time).<ref>{{cite book |last=Almqvist |first=Ebbe |title=History of Industrial Gases |url=https://books.google.com/?id=OI0fTJhydh4C&pg=PA23&dq=Joseph+Priestley+oxygen+mercury |format= |accessdate= |edition= |series= |year=2003 |publisher=Springer |isbn=978-0-306-47277-0 |chapter= |chapterurl= |quote= |page=23 }}</ref> In 1774, ] discovered that oxygen was released by heating mercuric oxide, although he did not identify the gas as ] (rather, Priestley called it "] air," as that was the ] that he was working under at the time).<ref>{{cite book |last=Almqvist |first=Ebbe |title=History of Industrial Gases |url=https://books.google.com/?id=OI0fTJhydh4C&pg=PA23&dq=Joseph+Priestley+oxygen+mercury |year=2003 |publisher=Springer |isbn=978-0-306-47277-0 |page=23 }}</ref>


==Synthesis== ==Synthesis==
Line 99: Line 99:
| journal = Acta Chemica Scandinavica | journal = Acta Chemica Scandinavica
| volume = 12 | volume = 12
| issue =
| pages = 1297–1304 | pages = 1297–1304
| year = 1958 | year = 1958
| url = http://actachemscand.dk/volume.php?select1=2&vol=12 | url = http://actachemscand.dk/volume.php?select1=2&vol=12
| issn =
| doi = 10.3891/acta.chem.scand.12-1297 | doi = 10.3891/acta.chem.scand.12-1297
| id =
| accessdate = November 17, 2010| doi-access = free | accessdate = November 17, 2010| doi-access = free
}}</ref> At pressures above 10 GPa both structures convert to a ] form.<ref name=landolt/> }}</ref> At pressures above 10 GPa both structures convert to a ] form.<ref name=landolt/>
Line 112: Line 109:
]] is sometimes used in the production of mercury as it decomposes quite easily. When it decomposes, oxygen gas is generated. ]] is sometimes used in the production of mercury as it decomposes quite easily. When it decomposes, oxygen gas is generated.


It is also used as a material for ]s for ].<ref>{{cite book |last=Moore |first=John W. |authorlink= |author2=Conrad L. Stanitski |author3=Peter C. Jurs |editor= |title=Chemistry: The Molecular Science |url=https://archive.org/details/chemistrymolecul0000moor |url-access=registration |quote=Mercury(II) oxide anode mercury battery. |format= |accessdate= |edition= |series= |year=2005 |publisher=Thomson Brooks/Cole |location= |language= |isbn=978-0-534-42201-1 |oclc= |doi= |id= |chapter= |chapterurl= |page= }}</ref> It is also used as a material for ]s for ].<ref>{{cite book |last=Moore |first=John W. |author2=Conrad L. Stanitski |author3=Peter C. Jurs |title=Chemistry: The Molecular Science |url=https://archive.org/details/chemistrymolecul0000moor |url-access=registration |quote=Mercury(II) oxide anode mercury battery. |year=2005 |publisher=Thomson Brooks/Cole |isbn=978-0-534-42201-1 |page= }}</ref>


==Health issues== ==Health issues==
Line 118: Line 115:
Mercury oxide is a highly toxic substance which can be absorbed into the body by inhalation of its aerosol, through the skin and by ingestion. The substance is irritating to the eyes, the skin and the respiratory tract and may have effects on the kidneys, resulting in kidney impairment. In the food chain important to humans, ] takes place, specifically in aquatic organisms. The substance is banned as a pesticide in the ].<ref name=bnpuk>{{cite web Mercury oxide is a highly toxic substance which can be absorbed into the body by inhalation of its aerosol, through the skin and by ingestion. The substance is irritating to the eyes, the skin and the respiratory tract and may have effects on the kidneys, resulting in kidney impairment. In the food chain important to humans, ] takes place, specifically in aquatic organisms. The substance is banned as a pesticide in the ].<ref name=bnpuk>{{cite web
| last = Chemicals Regulation Directorate | last = Chemicals Regulation Directorate
| authorlink =
| title = Banned and Non-Authorised Pesticides in the United Kingdom | title = Banned and Non-Authorised Pesticides in the United Kingdom
| website =
| publisher =
| url = http://www.pesticides.gov.uk/approvals.asp?id=55 | url = http://www.pesticides.gov.uk/approvals.asp?id=55
| doi =
| accessdate = 1 December 2009}}</ref> | accessdate = 1 December 2009}}</ref>



Revision as of 21:46, 3 December 2020

Mercury(II) oxide
Mercury(II) oxide
Mercury(II) oxide
Names
IUPAC name Mercury(II) oxide
Other names Mercuric oxide
Montroydite
Red mercury
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.040.580 Edit this at Wikidata
KEGG
PubChem CID
RTECS number
  • OW8750000
UNII
UN number 1641
CompTox Dashboard (EPA)
InChI
  • InChI=1S/Hg.OKey: UKWHYYKOEPRTIC-UHFFFAOYSA-N
SMILES
  • =O
Properties
Chemical formula HgO
Molar mass 216.591 g·mol
Appearance Yellow or red solid
Odor odorless
Density 11.14 g/cm
Melting point 500 °C (932 °F; 773 K) (decomposes)
Solubility in water 0.0053 g/100 mL (25 °C)
0.0395 g/100 mL (100 °C)
Solubility insoluble in alcohol, ether, acetone, ammonia
Band gap 2.2 eV
Magnetic susceptibility (χ) −44.0·10 cm/mol
Refractive index (nD) 2.5 (550 nm)
Structure
Coordination geometry orthorhombic
Thermochemistry
Std molar
entropy
(S298)
70 J·mol·K
Std enthalpy of
formation
fH298)
−90 kJ·mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Highly toxic
GHS labelling:
Pictograms GHS06: Toxic GHS08: Health hazard GHS09: Environmental hazard
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazards (white): no code
4 0 2
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
LD50 (median dose) 18 mg/kg (oral, rat)
Safety data sheet (SDS) ICSC 0981
Related compounds
Other anions Mercury sulfide
Mercury selenide
Mercury telluride
Other cations Zinc oxide
Cadmium oxide
Related compounds Mercury(I) oxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Mercury(II) oxide, also called mercuric oxide or simply mercury oxide, has a formula of HgO. It has a red or orange color. Mercury(II) oxide is a solid at room temperature and pressure. The mineral form montroydite is very rarely found.

History

See also: Maslama al-Majriti

In 1774, Joseph Priestley discovered that oxygen was released by heating mercuric oxide, although he did not identify the gas as oxygen (rather, Priestley called it "dephlogisticated air," as that was the paradigm that he was working under at the time).

Synthesis

Montroydite structure (red atoms are oxygens)
Cinnabar structure

The red form of HgO can be made by heating Hg in oxygen at roughly 350 °C, or by pyrolysis of Hg(NO3)2. The yellow form can be obtained by precipitation of aqueous Hg with alkali. The difference in color is due to particle size, both forms have the same structure consisting of near linear O-Hg-O units linked in zigzag chains with an Hg-O-Hg angle of 108°.

Structure

Under atmospheric pressure mercuric oxide has two crystalline forms: one is called montroydite (orthorhombic, 2/m 2/m 2/m, Pnma), and the second is analogous to the sulfide mineral cinnabar (hexagonal, hP6, P3221); both are characterized by Hg-O chains. At pressures above 10 GPa both structures convert to a tetragonal form.

Uses

HgO is sometimes used in the production of mercury as it decomposes quite easily. When it decomposes, oxygen gas is generated.

It is also used as a material for cathodes for mercury batteries.

Health issues

The label on an HgO powder bottle.

Mercury oxide is a highly toxic substance which can be absorbed into the body by inhalation of its aerosol, through the skin and by ingestion. The substance is irritating to the eyes, the skin and the respiratory tract and may have effects on the kidneys, resulting in kidney impairment. In the food chain important to humans, bioaccumulation takes place, specifically in aquatic organisms. The substance is banned as a pesticide in the EU.

Evaporation at 20 °C is negligible. HgO decomposes on exposure to light or on heating above 500 °C. Heating produces highly toxic mercury fumes and oxygen, which increases the fire hazard. Mercury(II) oxide reacts violently with reducing agents, chlorine, hydrogen peroxide, magnesium (when heated), disulfur dichloride and hydrogen trisulfide. Shock-sensitive compounds are formed with metals and elements such as sulfur and phosphorus.

References

  1. ^ "Mercury oxide (HgO) crystal structure, physical properties". Semiconductors · II-VI and I-VII Compounds; Semimagnetic Compounds. Landolt-Börnstein - Group III Condensed Matter. Vol. 41B. Springer-Verlag. 1999. pp. 1–7. doi:10.1007/b71137. ISBN 978-3-540-64964-9. {{cite book}}: |work= ignored (help)
  2. ^ Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN 978-0-618-94690-7.
  3. Chambers, Michael. "ChemIDplus - 21908-53-2 - UKWHYYKOEPRTIC-UHFFFAOYSA-N - Mercuric oxide [ISO] - Similar structures search, synonyms, formulas, resource links, and other chemical information". chem.sis.nlm.nih.gov.
  4. Almqvist, Ebbe (2003). History of Industrial Gases. Springer. p. 23. ISBN 978-0-306-47277-0.
  5. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  6. Aurivillius, Karin; Carlsson, Inga-Britt; Pedersen, Christian; Hartiala, K.; Veige, S.; Diczfalusy, E. (1958). "The Structure of Hexagonal Mercury(II)oxide". Acta Chemica Scandinavica. 12: 1297–1304. doi:10.3891/acta.chem.scand.12-1297. Retrieved November 17, 2010.
  7. Moore, John W.; Conrad L. Stanitski; Peter C. Jurs (2005). Chemistry: The Molecular Science. Thomson Brooks/Cole. p. 941. ISBN 978-0-534-42201-1. Mercury(II) oxide anode mercury battery.
  8. Chemicals Regulation Directorate. "Banned and Non-Authorised Pesticides in the United Kingdom". Retrieved 1 December 2009.
  9. "Mercury (II) oxide". International Occupational Safety and Health Information Centre. Retrieved 2009-06-06.

External links

Mercury compounds
Mercury(I)
Mercury(II)
Organomercury
compounds
Mercury(IV)
Amalgams
Mercury cations
Oxides
Mixed oxidation states
+1 oxidation state
+2 oxidation state
+3 oxidation state
+4 oxidation state
+5 oxidation state
+6 oxidation state
+7 oxidation state
+8 oxidation state
Related
Oxides are sorted by oxidation state. Category:Oxides
Oxygen compounds
Categories: