Misplaced Pages

BNN-20

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Chemical compound Pharmaceutical compound
BNN-20
Clinical data
Other namesBNN20; 17β-Spiro-(androst-5-en-17,2'-oxiran)-3β-ol
Identifiers
IUPAC name
  • (3S,8R,9S,10R,13S,14S,17S)-10,13-Dimethylspirophenanthrene-17,2'-oxirane]-3-ol
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
Chemical and physical data
FormulaC20H30O2
Molar mass302.458 g·mol
3D model (JSmol)
SMILES
  • C12CC(CC1=CC32CC4(3CC45CO5)C)O
InChI
  • InChI=1S/C20H30O2/c1-18-8-5-14(21)11-13(18)3-4-15-16(18)6-9-19(2)17(15)7-10-20(19)12-22-20/h3,14-17,21H,4-12H2,1-2H3/t14-,15+,16-,17-,18-,19-,20+/m0/s1
  • Key:LKDLANDMNIFZOI-IJMQKCTASA-N

BNN-20, also known as 17β-spiro-(androst-5-en-17,2'-oxiran)-3β-ol, is a synthetic neurosteroid, "microneurotrophin", and analogue of the endogenous neurosteroid dehydroepiandrosterone (DHEA). It acts as a selective, high-affinity, centrally active agonist of the TrkA, TrkB, and p75, receptors for the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), as well as for DHEA and DHEA sulfate (DHEA-S). The drug has been suggested as a potential novel treatment for Parkinson's disease and other conditions.

In 2011, the surprising discovery was made that DHEA, as well as DHEA-S, directly bind to and activate the TrkA and p75 with high affinity. DHEA was subsequently also found to bind to the TrkB and TrkC with high affinity, though it notably activated the TrkC but not the TrkB. DHEA and DHEA-S bound to these receptors with affinities that were in the low nanomolar range (around 5 nM), although the affinities were nonetheless approximately two orders of magnitude lower relative to the highly potent polypeptide neurotrophins (0.01–0.1 nM). In any case, DHEA and DHEA-S were identified as important endogenous neurotrophic factors. These findings may explain the positive association between decreased circulating DHEA levels with age and age-related neurodegenerative diseases.

Subsequently, a series of spiro derivatives of DHEA that had been synthesized and assessed in 2009 as potential neuroprotective agents was re-investigated. Of these, BNN-20 was assayed and found to directly bind to and activate the TrkA, TrkB, and p75. In addition, it was found to cross the blood–brain barrier and to have strong neuroprotective effects on dopaminergic neurons in vivo in a mouse model of dopaminergic neurodegeneration, which were dependent, at least in part, on activation of the TrkB. Moreover, unlike DHEA, it lacked any hormonal actions. As such, BNN-20 was described as a BDNF mimetic and was proposed as a potential novel treatment for Parkinson's disease and other conditions, particularly of the neurodegenerative variety, like amyotrophic lateral sclerosis.

See also

References

  1. ^ Calogeropoulou T, Avlonitis N, Minas V, Alexi X, Pantzou A, Charalampopoulos I, Zervou M, Vergou V, Katsanou ES, Lazaridis I, Alexis MN, Gravanis A (2009). "Novel dehydroepiandrosterone derivatives with antiapoptotic, neuroprotective activity". J. Med. Chem. 52 (21): 6569–87. doi:10.1021/jm900468p. PMID 19845386.
  2. ^ Botsakis K, Mourtzi T, Panagiotakopoulou V, Vreka M, Stathopoulos GT, Pediaditakis I, Charalampopoulos I, Gravanis A, Delis F, Antoniou K, Zisimopoulos D, Georgiou CD, Panagopoulos NT, Matsokis N, Angelatou F (2017). "BNN-20, a synthetic microneurotrophin, strongly protects dopaminergic neurons in the "weaver" mouse, a genetic model of dopamine-denervation, acting through the TrkB neurotrophin receptor". Neuropharmacology. 121: 140–157. doi:10.1016/j.neuropharm.2017.04.043. PMID 28461162. S2CID 5071762.
  3. ^ Lazaridis I, Charalampopoulos I, Alexaki VI, Avlonitis N, Pediaditakis I, Efstathopoulos P, Calogeropoulou T, Castanas E, Gravanis A (2011). "Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis". PLOS Biol. 9 (4): e1001051. doi:10.1371/journal.pbio.1001051. PMC 3082517. PMID 21541365.
  4. ^ Pediaditakis I, Iliopoulos I, Theologidis I, Delivanoglou N, Margioris AN, Charalampopoulos I, Gravanis A (2015). "Dehydroepiandrosterone: an ancestral ligand of neurotrophin receptors". Endocrinology. 156 (1): 16–23. doi:10.1210/en.2014-1596. PMID 25330101.
  5. Bennett JP, O'Brien LC, Brohawn DG (2016). "Pharmacological properties of microneurotrophin drugs developed for treatment of amyotrophic lateral sclerosis". Biochem. Pharmacol. 117: 68–77. doi:10.1016/j.bcp.2016.08.001. PMID 27498123.


Growth factor receptor modulators
Angiopoietin
CNTF
EGF (ErbB)
EGF
(ErbB1/HER1)
ErbB2/HER2
  • Agonists: Unknown/none
ErbB3/HER3
ErbB4/HER4
FGF
FGFR1
FGFR2
FGFR3
FGFR4
Unsorted
HGF (c-Met)
IGF
IGF-1
IGF-2
Others
LNGF (p75)
PDGF
RET (GFL)
GFRα1
GFRα2
GFRα3
GFRα4
Unsorted
SCF (c-Kit)
TGFβ
Trk
TrkA
  • Negative allosteric modulators: VM-902A
TrkB
TrkC
VEGF
Others
  • Additional growth factor receptor modulators: Cerebrolysin (neurotrophin mixture)
Categories: