Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
Bisphenol F (BPF; 4,4′-dihydroxydiphenylmethane) is an organic compound with the chemical formula (HOC 6H 4) 2CH 2. It is structurally related to bisphenol A (BPA), a popular precursor for forming plastics, as both belong to the category of molecules known as bisphenols, which feature two phenol groups connected via a linking group. In BPF, the two aromatic rings are linked by a methylene connecting group. In response to concern about the health effects of BPA, BPF is increasingly used as a substitute for BPA.
Uses
BPF is used in the manufacture of plastics and epoxy resins. It is used in the production of tank and pipe linings, industrial flooring, road and bridge deck toppings, structural adhesives, grouts, coatings and electrical varnishes. BPF is also utilized in liners, lacquers, adhesives, plastics, and the coating of drinks and food cans. BPF is found in dental materials, such as restorative materials, liners, adhesives, oral prosthetic devices and tissue substitutes.
Biological effects
Pharmacokinetics
BPF undergoes two primary phase II biotransformations to form the corresponding glucuronide and sulfate.
Hormonal effects
BPF has estrogenic, progesteronic, and anti-androgenic effects. The overarching implications of these hormonal changes for humans are decreases in testosterone secretions, especially in male testes, and increases in the activity of estrogen. The effects are greatest in the fetal testis, which is primed to be more easily affected due to its plasticity and massive period of growth. "Exposure s in utero may program the diseases of the testis, prostate, kidney and abnormalities in the immune system, and cause tumors, uterine hemorrhage during pregnancy and polycystic ovary".
Environmental contamination
BPF is pervasive in the environment, appearing in river water, drinking water, and agricultural soil samples. Biodegradation appears to be the most promising route for removal of BPA and related bisphenols. One degradation process converts BPA to the corresponding benzophenone (HOC6H4)2CO, which is relatively labile.
Cabaton, Nicolas; Chagnon, Marie-Christine; Lhuguenot, Jean-Claude; Cravedi, Jean-Pierre; Zalko, Daniel (2006-12-27). "Disposition and metabolic profiling of bisphenol F in pregnant and nonpregnant rats". Journal of Agricultural and Food Chemistry. 54 (26): 10307–10314. Bibcode:2006JAFC...5410307C. doi:10.1021/jf062250q. ISSN0021-8561. PMID17177575.
Cabaton, Nicolas; Zalko, Daniel; Rathahao, Estelle; Canlet, Cécile; Delous, Georges; Chagnon, Marie-Christine; Cravedi, Jean-Pierre; Perdu, Elisabeth (2008-10-01). "Biotransformation of bisphenol F by human and rat liver subcellular fractions". Toxicology in Vitro. 22 (7): 1697–1704. Bibcode:2008ToxVi..22.1697C. doi:10.1016/j.tiv.2008.07.004. ISSN0887-2333. PMID18672047.
Dumont, Coralie; Perdu, Elisabeth; Sousa, Georges de; Debrauwer, Laurent; Rahmani, Roger; Cravedi, Jean-Pierre; Chagnon, Marie-Christine (2011-10-01). "Bis(hydroxyphenyl)methane—bisphenol F—metabolism by the HepG2 human hepatoma cell line and cryopreserved human hepatocytes". Drug and Chemical Toxicology. 34 (4): 445–453. doi:10.3109/01480545.2011.585651. ISSN0148-0545. PMID21770713. S2CID25319579.
Basak, Sanjay; Das, Mrinal K.; Duttaroy, Asim K. (2020). "Plastics derived endocrine-disrupting compounds and their effects on early development". Birth Defects Research. 112 (17): 1308–1325. doi:10.1002/bdr2.1741. hdl:10852/82658. PMID32476245.