Misplaced Pages

Clavam

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Class of antibiotics
Clavulanic acid

Clavams are a class of β-lactam antibiotics. These antibiotics are derived from Streptomyces clavuligerus NRRL 3585. This class is divided into the clavulanic acid class and the 5S clavams class. Both groups are the outcomes of the fermentation process produced by Streptomyces spp. Clavulanic acid is a broad-spectrum antibiotic and 5S clavams may have anti-fungal properties. They are similar to penams, but with an oxygen substituted for the sulfur. Thus, they are also known as oxapenams.

An example is clavulanic acid, from which this compound class receives its name.

Clavulanic acid, a type of clavam, has antibiotic properties. It can be used as a medication to treat a variety of bacterial infections. Clavam tablets may be effective for short-term treatment of bronchitis, cystitis, sinusitis, otitis media, or skin infections. Clavams are commonly used in conjunction with other antibiotics such as amoxicillin to produce a broader therapeutic effect. "One of the most valuable multipurpose and incredible trade of antibiotics is the β-lactams group.

Clavulanic acid strongly inhibits β-lactamase in bacteria, which is associated with its antibiotic properties. β-Lactam antibiotics generally have a common feature which is the 3-carbon and 1-nitrogen ring (β-lactam ring) that is highly reactive. Different molecules of the Clavam class have been shown to inhibit the action of several fungal species. 5S clavams do not have an inhibitory effect on β-lactamase, but are involved in methionine biosynthesis inhibition, making them bacteriostatic agents. Additionally, 5S Clavams may have inhibitory effects on RNA synthesis, which is a common property of anti-fungal medications. Clavams have wide-ranging bioactivity, and may have greater therapeutic use than current research indicates. Because of their activity on β-lactamase, this class of antibiotics can evade antibiotic resistance in bacteria, which is a risk associated with other antibiotics such as penicillins.

Regulation of clavam-biosynthesis in S. clavuligerus

In S. Clavuligerus infection, a Streptomyces antibiotic regulatory protein known as cephamycin and clavulanic acid regulator (CcaR) is encoded into the cephamycin gene cluster. This is essential for the cephamycin C and clavulanic acid, but not the 5S claims. CcaR is important for the expression of polycistronic transcripts, which are early genes for clavulanic acid biosynthesis. This is also a key factor for activating its own transcription by binding to its own promoting region.

References

  1. ^ Pruess, D. L.; Kellett, M. (1983). "Ro 22-5417, A NEW CLAVAM ANTIBIOTIC FROM STREPTOMYCES CLAVULIGERUS I. DISCOVERY AND BIOLOGICAL ACTIVITY". The Journal of Antibiotics. 36 (3): 208–212. doi:10.7164/antibiotics.36.208. ISSN 0021-8820. PMID 6833140.
  2. Jensen, Susan E (2012-10-01). "Biosynthesis of clavam metabolites". Journal of Industrial Microbiology and Biotechnology. pp. 1407–1419. doi:10.1007/s10295-012-1191-0. Retrieved 2024-02-11.
  3. "Medscape.com". Retrieved 2008-12-29.
  4. Chemical Research Laboratory, Oxford University (The Schofield Group). "Antibiotic Biosynthesis, Clavulanic Acid Mode of Action and Biosynthesis". Archived from the original on 2011-06-05. Retrieved 2011-07-25.
  5. CLAVAM
  6. "Clavam". NPS MedicineWise. 8 September 2020. Retrieved 2021-04-29.
  7. Chmielewski, Marek; Cierpucha, Maciej; Kowalska, Patrycja; Kwit, Marcin; Frelek, Jadwiga (2008-05-15). "Structure–chiroptical properties relationship in clavams: An experimental and theoretical study". Chirality. 20 (5): 621–627. doi:10.1002/chir.20484. ISSN 0899-0042. PMID 17924419.
  8. Pandey, Neelanjana; Cascella, Marco (2022), "Beta Lactam Antibiotics", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 31424895, retrieved 2022-04-04
  9. Jensen, Susan E (2012-10-01). "Biosynthesis of clavam metabolites". Journal of Industrial Microbiology and Biotechnology. 39 (10): 1407–1419. doi:10.1007/s10295-012-1191-0. ISSN 1476-5535. PMID 22948564. S2CID 2974684.
  10. Röhl, F.; Rabenhorst, J.; Zähner, H. (1987-05-01). "Biological properties and mode of action of clavams". Archives of Microbiology. 147 (4): 315–320. Bibcode:1987ArMic.147..315R. doi:10.1007/BF00406126. ISSN 1432-072X. PMID 3304182. S2CID 23725763.
  11. Cierpucha, Maciej; Panfil, Irma; Danh, Tong Thanh; Chmielewski, Marek; Kurzatkowski, Wieslaw; Rajnisz, Aleksandra; Solecka, Jolanta (October 2007). "Synthesis of 3-Substituted-clavams: Antifungal Properties, DD -Peptidase and β-Lactamase Inhibition". The Journal of Antibiotics. 60 (10): 622–632. doi:10.1038/ja.2007.80. ISSN 1881-1469. PMID 17965478.
  12. E Jensen, Susan (2012). "Biosynthesis of clavam metabolites". Journal of Industrial Microbiology & Biotechnology. 39 (10): 1407–1419. doi:10.1007/s10295-012-1191-0. PMID 22948564. S2CID 2974684.
Antibacterials active on the cell wall and envelope (J01C-J01D)
β-lactams
(inhibit synthesis
of peptidoglycan
layer of bacterial
cell wall by binding
to and inhibiting
PBPs, a group of
D-alanyl-D-alanine
transpeptidases
)
Penicillins (Penams)
Narrow
spectrum
β-lactamase sensitive
(1st generation)
β-lactamase resistant
(2nd generation)
Extended
spectrum
Aminopenicillins (3rd generation)
Carboxypenicillins (4th generation)
Ureidopenicillins (4th generation)
Other
Carbapenems / Penems
Cephems
Cephalosporins
Cephamycins
Carbacephems
1st generation
2nd generation
3rd generation
4th generation
5th generation
Siderophore
Veterinary
Monobactams
β-lactamase inhibitors
Combinations
Polypeptides
Lipopeptides
Other
  • Inhibits PG elongation and crosslinking: Ramoplanin
Intracellular
Other
Categories: