Misplaced Pages

Cramér's V

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Statistical measure of association

In statistics, Cramér's V (sometimes referred to as Cramér's phi and denoted as φc) is a measure of association between two nominal variables, giving a value between 0 and +1 (inclusive). It is based on Pearson's chi-squared statistic and was published by Harald Cramér in 1946.

Usage and interpretation

φc is the intercorrelation of two discrete variables and may be used with variables having two or more levels. φc is a symmetrical measure: it does not matter which variable we place in the columns and which in the rows. Also, the order of rows/columns does not matter, so φc may be used with nominal data types or higher (notably, ordered or numerical).

Cramér's V varies from 0 (corresponding to no association between the variables) to 1 (complete association) and can reach 1 only when each variable is completely determined by the other. It may be viewed as the association between two variables as a percentage of their maximum possible variation.

φc is the mean square canonical correlation between the variables.

In the case of a 2 × 2 contingency table Cramér's V is equal to the absolute value of Phi coefficient.

Calculation

Let a sample of size n of the simultaneously distributed variables A {\displaystyle A} and B {\displaystyle B} for i = 1 , , r ; j = 1 , , k {\displaystyle i=1,\ldots ,r;j=1,\ldots ,k} be given by the frequencies

n i j = {\displaystyle n_{ij}=} number of times the values ( A i , B j ) {\displaystyle (A_{i},B_{j})} were observed.

The chi-squared statistic then is:

χ 2 = i , j ( n i j n i . n . j n ) 2 n i . n . j n , {\displaystyle \chi ^{2}=\sum _{i,j}{\frac {(n_{ij}-{\frac {n_{i.}n_{.j}}{n}})^{2}}{\frac {n_{i.}n_{.j}}{n}}}\;,}

where n i . = j n i j {\displaystyle n_{i.}=\sum _{j}n_{ij}} is the number of times the value A i {\displaystyle A_{i}} is observed and n . j = i n i j {\displaystyle n_{.j}=\sum _{i}n_{ij}} is the number of times the value B j {\displaystyle B_{j}} is observed.

Cramér's V is computed by taking the square root of the chi-squared statistic divided by the sample size and the minimum dimension minus 1:

V = φ 2 min ( k 1 , r 1 ) = χ 2 / n min ( k 1 , r 1 ) , {\displaystyle V={\sqrt {\frac {\varphi ^{2}}{\min(k-1,r-1)}}}={\sqrt {\frac {\chi ^{2}/n}{\min(k-1,r-1)}}}\;,}

where:

  • φ {\displaystyle \varphi } is the phi coefficient.
  • χ 2 {\displaystyle \chi ^{2}} is derived from Pearson's chi-squared test
  • n {\displaystyle n} is the grand total of observations and
  • k {\displaystyle k} being the number of columns.
  • r {\displaystyle r} being the number of rows.

The p-value for the significance of V is the same one that is calculated using the Pearson's chi-squared test.

The formula for the variance of Vc is known.

In R, the function cramerV() from the package rcompanion calculates V using the chisq.test function from the stats package. In contrast to the function cramersV() from the lsr package, cramerV() also offers an option to correct for bias. It applies the correction described in the following section.

Bias correction

Cramér's V can be a heavily biased estimator of its population counterpart and will tend to overestimate the strength of association. A bias correction, using the above notation, is given by

V ~ = φ ~ 2 min ( k ~ 1 , r ~ 1 ) {\displaystyle {\tilde {V}}={\sqrt {\frac {{\tilde {\varphi }}^{2}}{\min({\tilde {k}}-1,{\tilde {r}}-1)}}}}  

where

φ ~ 2 = max ( 0 , φ 2 ( k 1 ) ( r 1 ) n 1 ) {\displaystyle {\tilde {\varphi }}^{2}=\max \left(0,\varphi ^{2}-{\frac {(k-1)(r-1)}{n-1}}\right)}  

and

k ~ = k ( k 1 ) 2 n 1 {\displaystyle {\tilde {k}}=k-{\frac {(k-1)^{2}}{n-1}}}  
r ~ = r ( r 1 ) 2 n 1 {\displaystyle {\tilde {r}}=r-{\frac {(r-1)^{2}}{n-1}}}  

Then V ~ {\displaystyle {\tilde {V}}} estimates the same population quantity as Cramér's V but with typically much smaller mean squared error. The rationale for the correction is that under independence, E [ φ 2 ] = ( k 1 ) ( r 1 ) n 1 {\displaystyle E={\frac {(k-1)(r-1)}{n-1}}} .

See also

Other measures of correlation for nominal data:

Other related articles:

References

  1. Cramér, Harald. 1946. Mathematical Methods of Statistics. Princeton: Princeton University Press, page 282 (Chapter 21. The two-dimensional case). ISBN 0-691-08004-6 (table of content Archived 2016-08-16 at the Wayback Machine)
  2. Sheskin, David J. (1997). Handbook of Parametric and Nonparametric Statistical Procedures. Boca Raton, Fl: CRC Press.
  3. Liebetrau, Albert M. (1983). Measures of association. Newbury Park, CA: Sage Publications. Quantitative Applications in the Social Sciences Series No. 32. (pages 15–16)
  4. "Rcompanion: Functions to Support Extension Education Program Evaluation". 2019-01-03.
  5. "Lsr: Companion to "Learning Statistics with R"". 2015-03-02.
  6. Bergsma, Wicher (2013). "A bias correction for Cramér's V and Tschuprow's T". Journal of the Korean Statistical Society. 42 (3): 323–328. doi:10.1016/j.jkss.2012.10.002.
  7. Bartlett, Maurice S. (1937). "Properties of Sufficiency and Statistical Tests". Proceedings of the Royal Society of London. Series A. 160 (901): 268–282. Bibcode:1937RSPSA.160..268B. doi:10.1098/rspa.1937.0109. JSTOR 96803.
  8. Tyler, Scott R.; Bunyavanich, Supinda; Schadt, Eric E. (2021-11-19). "PMD Uncovers Widespread Cell-State Erasure by scRNAseq Batch Correction Methods". BioRxiv: 2021.11.15.468733. doi:10.1101/2021.11.15.468733.

External links

Statistics
Descriptive statistics
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Data collection
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical inference
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical / Multivariate / Time-series / Survival analysis
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Applications
Biostatistics
Engineering statistics
Social statistics
Spatial statistics
Categories: