An equianalgesic chart is a conversion chart that lists equivalent doses of analgesics (drugs used to relieve pain). Equianalgesic charts are used for calculation of an equivalent dose (a dose which would offer an equal amount of analgesia) between different analgesics. Tables of this general type are also available for NSAIDs, benzodiazepines, depressants, stimulants, anticholinergics and others.
Format
Equianalgesic tables are available in different formats, such as pocket-sized cards for ease of reference. A frequently-seen format has the drug names in the left column, the route of administration in the center columns and any notes in the right column.
Purpose
There are several reasons for switching a patient to a different pain medication. These include practical considerations such as lower cost or unavailability of a drug at the patient's preferred pharmacy, or medical reasons such as lack of effectiveness of the current drug or to minimize adverse effects. Some patients request to be switched to a different narcotic due to stigma associated with a particular drug (e.g. a patient refusing methadone due to its association with opioid addiction treatment). Equianalgesic charts are also used when calculating an equivalent dosage of the same drug, but with a different route of administration.
Precautions
An equianalgesic chart can be a useful tool, but the user must take care to correct for all relevant variables such as route of administration, cross tolerance, half-life and the bioavailability of a drug. For example, the narcotic levorphanol is 4–8 times stronger than morphine, but also has a much longer half-life. Simply switching the patient from 40 mg of morphine to 10 mg of levorphanol would be dangerous due to dose accumulation, and hence frequency of administration should also be taken into account.
There are other concerns about equianalgesic charts. Many charts derive their data from studies conducted on opioid-naive patients. Patients with chronic (rather than acute) pain may respond to analgesia differently. Repeated administration of a medication is also different from single dosing, as many drugs have active metabolites that can build up in the body. Patient variables such as sex, age, and organ function may also influence the effect of the drug on the system. These variables are rarely included in equianalgesic charts.
Opioid equivalency table
This section appears to contradict the equianalgesic table in the article on oxycodone. Please discuss at the talk page and do not remove this message until the contradictions are resolved. (September 2023) |
Opioids are a class of compounds that elicit analgesic (pain killing) effects in humans and animals by binding to the μ-opioid receptor within the central nervous system. The following table lists opioid and non-opioid analgesic drugs and their relative potencies. Values for the potencies represent opioids taken orally unless another route of administration is provided. As such, their bioavailabilities differ, and they may be more potent when taken intravenously.
Nonlinearities
This chart measures pain relief versus mass of medication. Not all medications have a fixed relationship on this scale. Methadone is different from most opioids because its potency can vary depending on how long it is taken. Acute use (1–3 days) yields a potency about 1.5× stronger than that of morphine and chronic use (7 days+) yields a potency about 2.5 to 5× that of morphine. Similarly, the effect of tramadol increases after consecutive dosing due to the accumulation of its active metabolite and an increase of the oral bioavailability in chronic use.
Analgesic | Strength (relative) |
Equivalent dose (10 mg oral morphine) |
Bioavailability | Half-life of active metabolites (hours) |
Oral-to-parenteral ratio | Speed of onset | Duration | |
---|---|---|---|---|---|---|---|---|
Paracetamol (non-opioid) | 1⁄360 | 3600 mg | 63–89% | 1–4 | 37 min (PO); 8 min (IV) | 5–6 hours | ||
Aspirin (NSAID, non-opioid) | 1⁄360 | 3600 mg | 80–100% | 3.1–9 | ||||
Ibuprofen (NSAID, non-opioid) | 1⁄222 | 2220 mg | 87–100% | 1.3–3 | ||||
Diflunisal (NSAID, non-opioid) | 1⁄160 | 1600 mg | 80–90% | 8–12 | ||||
Naproxen (NSAID, non-opioid) | 1⁄138 | 1380 mg | 95% | 12–24 | ||||
Piroxicam (NSAID non-opioid) | 1⁄120 (est.) | |||||||
Indomethacin (NSAID non-opioid) | 1⁄64 (est.) | |||||||
Diclofenac (NSAID, non-opioid) | 1⁄10 (est.) (same as Codeine) | 100 mg (est.) | 50–60% | 1–4 | ||||
Ketorolac (NSAID, non-opioid) | 1⁄3 (est.) | 30 mg IV (est.) | 80–100% | 5–7 | ||||
Nefopam (Centrally-acting non-opioid) | 5⁄8 (est.) | 16 mg IM (est.) | Nefopam: 3–8, Desmethylnefopam 10–15 | |||||
Dextropropoxyphene | 1⁄13–1⁄20 | 130–200 mg | ||||||
Codeine | 1⁄10–3⁄20 | 100–120 mg (PO) | ~90% | 2.5–3 (C6G 1.94; morphine 2–3) | 15–30 min (PO) | 4–6 hours | ||
Tramadol | 1⁄10 | ~100 mg | 75% (IR), 85–90% (ER) | 6.0–8.8 (M1) | ||||
Opium (oral) | 1⁄10 | ~100 mg | ~25% (morphine) | 2.5–3.0 (morphine, codeine) | ||||
Tilidine | 1⁄10 | 100 mg | ||||||
Dihydrocodeine | 1⁄5 | 50 mg | 20% | 4 | ||||
Anileridine | 1⁄4 | 40 mg | ||||||
Alphaprodine | 1⁄4–1⁄6 | 40–60 mg | ||||||
Tapentadol | 3⁄10 | 32 mg | 32% (fasting) | |||||
Pethidine (meperidine) | 1⁄3 | 30 mg SC/IV/IM
300 mg (PO) |
50–60% Orally, 100% SC/IV/IM | 3–5 | 5–15 sec if IV, 15–25 min if orally | |||
Dipipanone | 2⁄5 | 25 mg (PO) | 3.2–3.8 hours | ±4 hours | ||||
Benzylfentanyl | 1⁄2 | |||||||
AH-7921 | 4⁄5 | |||||||
Hydrocodone | 1 | 10 mg | 70% | 3.8–6 (Instant Release; PO) | 10–30 min (Instant Release; PO) | 4–6 | ||
Metopon | 1 | 10 mg | ||||||
Pentazocine lactate (IV) | 1 | 10 mg SC/IV/IM, 150 mg (PO) | ||||||
SR-17018 | 4⁄5/1 | 10–12 mg | 100% IV (Presumably)
Unknown (researches are still being made) |
5–10 seconds if used IV and 15-25 min Orally (PO) | ||||
Morphine (oral) | 1 | 10 mg | ~25% | 2–4 | 3:1 | 30 min (PO) | 3–6 hours | |
Oxycodone (oral) | 1.5 | 6.67 mg | (60–87 / ±75% PO) / 78.2% (IN) / 100%
(IV/IM) or other parental administrations apart from spinal administration |
2–3 hours (Instant Release)(PO); 4.5 hours (Controlled Release)(PO) | 10–30 min (Instant Release)(PO); 1 hour (Controlled Release)(PO) | 3–6 hours (Instant Release)(PO); 10–12 hours (Controlled Release)(PO) | ||
Spiradoline | 1.5 | |||||||
Nicomorphine | 2–3 | 3.33–5 mg | 20% | 4 | ||||
Oxycodone (IV/IM) or other parental administrations apart from spinal administration | 3–4 | 2.5–3.33 mg | (60–87 / ±75% PO) / 78.2% (IN) / 100%
(IV/IM) or other parental administrations apart from spinal administration |
1.5–3 (IV/IM) | 5 min (IV) | 2–4 hours | ||
Morphine (IV/IM) or other parental administrations apart from spinal administration | 3–4 | 2.5–3.33 mg | 100% | 3–4 | 3:1/4:1 | Instantaneously (from 5 to 15 sec; IV); 5–15 min (IM) | 3–7 hours | |
Clonitazene | 3 | 3.33 mg | ||||||
Methadone (acute) | 3–4 | 2.5–3.33 mg | 40–90% | 15–60 | 2:1 | |||
Methadone (chronic) | 2.5–5 | 2–4 mg | 40–90% | 15–60 | 2:1 | |||
Phenazocine | 4 | ~2.5 mg | ||||||
Diamorphine (Heroin;
IV/IM) or other parental administrations apart from spinal administration |
4–5 (IV,IM)
2–2.5 (insufflated) |
2–2.5 mg | 100% | <0.6 (morphine prodrug) | Instantaneously (from 5 to 15 sec; IV); 2 to 5 min (IM) | 3 to 7 hours
(morphine prodrug) | ||
Dezocine | 4–6 | 1.6–2.5 mg | 97% (IM) | 2.2 | ||||
6-MAM | 6–7 | 1.25–1.6 | 100% (IV,IM) | <0.6 (morphine prodrug) | presumably 2:1 | Instantaneously (from 5 to 15 sec; IV); 2 to 5 min (IM) | 3 to 7 hours
(morphine prodrug) | |
Hydromorphone | 10 (SC, IV, IM) 3–3.75 (PO) |
0.5–0.75 mg (SC, IV, IM) 2.5 mg (PO) |
Orally: 30–35%, Intranasal: 52–58%, IV/IM: 100%
62% |
2–3 | 5:1 | |||
Oxymorphone | 10 (SC, IV, IM) 3–4(PO) |
3.33 mg (PO), 0.333 mg (IV,IM & Interlaminar) | PO: 10%
Buccal: 28% Sublingual: 37.5% Intranasal: 43% IV, IM & IT: 100% |
7.25–9.43 | 35 min (PO), Instantaneously (from 5 to 15 sec)(IV) | 6–8 hours orally
2–6 hours parenteral | ||
U-47700 | 7.5 | 1.5 mg | 1.5–3 | |||||
Levorphanol | 8 | 1.25 mg | 70% | 11–16 | 1:1 | |||
Desomorphine (Krokodil) | 8–10 | 1–1.25 mg | ~100% (IV) | 2–3 | Instantaneously (from 5 to 15 sec)(IV); 2–5 min (IM) | 3–4 hours | ||
N-Phenethylnormorphine | 8–14 | |||||||
Alfentanyl | 10–25 | 1.5 (90–111 minutes) | Instantaneously (from 5 to 15 sec); 4× more rapid than fentanyl | 0.25 hr (15 min); up to 54 minutes until offset of effects | ||||
Trefentanil | (10–25)+ | |||||||
Brifentanil | (10–25)+ | |||||||
Acetylfentanyl | 15 | |||||||
7-Hydroxymitragynine | 17 | ~0.6 mg | ||||||
Furanylfentanyl | 20 | |||||||
Butyrfentanyl | 25 | |||||||
Enadoline | 25 | 15 μg (threshold) and 0.160 mg/kg (dissociative effects) | ||||||
Buprenorphine (SL) | 40 | 0.25 mg | 30% (SL); ~100% (TD); 65% (buccal); 48% (INS) | 20–70, mean 37 | 3:1 | 45 min | 12–24 hours | |
N-Phenethyl-14-ethoxymetopon | 60 | 160 μg | ||||||
Phenomorphan | 60–80 | 0.13–0.16 mg | ||||||
N-Phenethylnordesomorphine | 85 | |||||||
Phenaridine | (50–100)− | |||||||
Fentanyl | 50–100 | 0.1 mg (100 μg) IM/IV | 33% (SL); 92% (TD); 89% (INS); 50% (buc) | 0.04 (IV); 7 (TD) | 5 min (TD/IV) | 30–60 minutes (IV) | ||
Metonitazene | 100 | 0.1 mg/100 μg | ||||||
Acrylfentanyl | (50–100+) | |||||||
Buprenorphine (Transdermal) | 100–115 | 0.1 mg (100 μg) | 30% (SL); ~100% (TD); 65% (buccal); 48% (INS) | 3:1 | 45–60 minutes | 12–24 hours | ||
14-Cinnamoyloxycodeinone | 177 | 77 μg | ||||||
Etonitazepyne | 180-190 | 55–60 μg | ||||||
Protonitazepyne | 180-190 | 55–60 μg | ||||||
Remifentanil | 100–200 | 50–100 μg | 0.05 (3–6 min context-sensitive half-life; 7–18 min elimination half-life) | Instantaneously (from 5 to 15 sec) | 15 minutes; rapid offset of effects necessitates continuous infusion for maintenance of anesthesia | |||
Protonitazene | 200 | 50 μg | ||||||
Ocfentanil | 125–250 | 40–80 μg | ||||||
Ro4-1539 | 240–480 | 20–40 μg | ||||||
Isotonitazene | 500 | 20 μg | ||||||
Sufentanil | 500–1,000 | 10–20 μg | 4.4 | |||||
BDPC | 504 | ~20 μg | ||||||
C-8813 | 591 | |||||||
4-Phenylfentanyl | 800 | |||||||
Etonitazene | 1000–1500 | 6.6–10 μg | ||||||
3-Methylfentanyl | 1000–1500 | |||||||
N-Desetylisotonitazene | 1000–2000 | 5–10 μg | ||||||
Etorphine | 1,000–3,000 | 3.3–10 μg | ||||||
Ohmefentanyl | 6300 | |||||||
Acetorphine | 8700 | 1.33 μg | ||||||
Dihydroetorphine | 1,000–12,000 | 0.83–10 μg (20–40 μg SL) | ||||||
Carfentanil | 10,000 | 1.0 μg | 7.7 | |||||
2-Fluorohmefentanil | 18,000 | |||||||
4-Carboethoxyohmefentanil | 30,000 | |||||||
Ohmecarfentanil | (30,000) | |||||||
R-30490 | (10,000–100,000)− | |||||||
Lofentanil | (10,000–100,000)+ | |||||||
14-Methoxymetopon (intraspinally) | (1,000,000) | |||||||
PO: oral • IV: intravenous injection • IM: intramuscular injection • SC: subcutaneous injection • SL: sublingual • TD: transdermal "Strength" is defined as analgesic potency relative to oral morphine. Tolerance, sensitization, cross-tolerance, metabolism, and hyperalgesia may be complex factors in some individuals. Interactions with other drugs, food and drink, and other factors may increase or decrease the effect of certain analgesics and alter their half-life. Because some listed analgesics are prodrugs or have active metabolites, individual variation in liver enzymes (e.g., CYP2D6 enzyme) may result in significantly altered effects. |
See also
- Oripavine – for more on the comparative strength of oripavine derivatives
References
Explanatory notes
- Approximate. There is a wide range of values in controlled trials.
- 10 mg oral morphine is equivalent to n mg analgesic drug x, e.g. 10 mg morphine is equivalent to 3600 mg paracetamol or 1.5 mg hydromorphone
Citations
- ^ Joishy 1999.
- McPherson 2009, p. 5.
- ^ Natusch 2012.
- McPherson 2009, p. 3.
- McPherson 2009, p. 4.
- McPherson 2009, p. 8.
- McPherson 2009, p. 9.
- Anderson et al 2001.
- Pereira et al 2001.
- ^ "Dosing Guidelines for Acetaminophen and Selected NSAIDs" (PDF). Elsevier Health. Mosby. 1999. Retrieved 2022-11-22.
- "Diclofenac (Voltaren®) vs Naproxen (Aleve®, Naprosyn®) - eMedExpert.com". www.emedexpert.com. Retrieved 2022-11-22.
- Pharma Guide Pre-Work 3rd Edition
- ^ "Ch. 4 Narcotics: Synthetic Narcotics: Dextropropoxyphene". Drugs of Abuse. Drug Enforcement Administration, U.S. Department of Justice. 2005. Archived from the original on 2006-11-02.
- KuKanich B (February 2010). "Pharmacokinetics of acetaminophen, codeine, and the codeine metabolites morphine and codeine-6-glucuronide in healthy Greyhound dogs". J. Vet. Pharmacol. Ther. 33 (1): 15–21. doi:10.1111/j.1365-2885.2009.01098.x. PMC 2867071. PMID 20444020.
- "ULTRAM® (tramadol hydrochloride) Tablets Full Prescribing Information" (PDF). US Food and Drug Administration. Ortho-McNeil Pharmaceutical, Inc. March 2008. p. 4. Retrieved December 28, 2016.
The mean terminal plasma elimination half-lives of racemic tramadol and racemic M1 are 6.3 ± 1.4 and 7.4 ± 1.4 hours, respectively. The plasma elimination half-life of racemic tramadol increased from approximately six hours to seven hours upon multiple dosing.
- "Anileridine". DrugBank Version: 3.0. DrugBank.
- ^ Cupp 2012.
- "Dipipanone", Misplaced Pages, 2024-06-14, retrieved 2024-10-19
- Paterson S (1992). "Pharmacokinetics of dipipanone after a single oral dose". British Journal of Clinical Pharmacology. 33 (4): 449–450. doi:10.1111/j.1365-2125.1992.tb04066.x. PMC 1381337. PMID 1349495.
- Zacny JP, Gutierrez S (April 2009). "Within-subject comparison of the psychopharmacological profiles of oral hydrocodone and oxycodone combination products in non-drug-abusing volunteers". Drug Alcohol Depend. 101 (1–2): 107–14. doi:10.1016/j.drugalcdep.2008.11.013. PMID 19118954.
- "TALWIN (pentazocine lactate) injection, solution". DailyMed. National Institute of Health. Retrieved 2011-12-10.
- ^ "Equianalgesic Conversion". GlobalRPH.
- ^ Lofwall MR, Moody DE, Fang WB, Nuzzo PA, Walsh SL (2011). "Pharmacokinetics of intranasal Crushed OxyContin and Intravenous Oxycodone in Nondependent Prescription Opioid Abusers". Journal of Clinical Pharmacology. 52 (4): 600–606. doi:10.1177/0091270011401620. PMC 4006196. PMID 21610203.
- Sunshine, A., Olson, N., Colon, A., Rivera, J., Kaiko, R.F., Fitzmartin, R.D., Reder, R.F., Goldenheim, P.D. (July 1996). "Analgesic Efficacy of Controlled-Release Oxycodone in Postoperative Pain". Journal of Clinical Pharmacology. 36 (7): 595–603. doi:10.1002/j.1552-4604.1996.tb04223.x. PMID 8844441. S2CID 35076787.
- ^ Silvasti M, Rosenberg P, Seppälä T, Svartling N, Pitkänen M (May 1998). "Comparison of analgesic efficacy of oxycodone and morphine in postoperative intravenous patient-controlled analgesia". Acta Anaesthesiologica Scandinavica. 42 (5): 576–580. doi:10.1111/j.1399-6576.1998.tb05169.x. PMID 9605375. S2CID 25763059. Retrieved 10 August 2022.
- Tabla de equivalencia opiáceos
- ^ Manfredonia JF (March 2005). "Prescribing methadone for pain management in end-of-life care". J Am Osteopath Assoc. 105 (3 Suppl 1): S18–21. PMID 18154194. Table 2: Conversion Ratio of Oral Morphine to Methadone.
- Reichle CW, Smith GM, Gravenstein JS, Macris SG, Beecher HK (April 1962). "Comparative analgesic potency of heroin and morphine in postoperative patients". J. Pharmacol. Exp. Ther. 136 (1): 43–6. PMID 14491157.
- Cone EJ, Holicky BA, Grant TM, Darwin WD, Goldberger BA (October 1993). "Pharmacokinetics and pharmacodynamics of intranasal 'snorted' heroin". Journal of Analytical Toxicology. 17 (6): 327–337. doi:10.1093/jat/17.6.327. ISSN 0146-4760. PMID 8271778.
- ^ Sawynok J (January 1986). "The therapeutic use of heroin: a review of the pharmacological literature". Canadian Journal of Physiology and Pharmacology. 64 (1): 1–6. doi:10.1139/y86-001. PMID 2420426.
- Perekopskiy D, Kiyatkin EA (2019-08-21). "6-Monoacetylmorphine (6-MAM), Not Morphine, Is Responsible for the Rapid Neural Effects Induced by Intravenous Heroin". ACS Chemical Neuroscience. 10 (8): 3409–3414. doi:10.1021/acschemneuro.9b00305. ISSN 1948-7193. PMID 31268284.
- Toronto Surgery 2014.
- Walker 2001.
- "Levorphanol". DrugBank Version: 3.0. DrugBank.
- ^ Mendelson J, Upton RA, Everhart ET, Jacob P 3rd, Jones RT (1997). "Bioavailability of sublingual buprenorphine". Journal of Clinical Pharmacology. 37 (1): 31–7. doi:10.1177/009127009703700106. PMID 9048270
- ^ "Buprenorphine / Naloxone Buccal Film (BUNAVAIL) C-III" (PDF). Pharmacy Benefits Management (PBM) Services. September 2014.
- ^ BUNAVAIL (buprenorphine and naloxone) buccal film, CIII . BioDelivery BioDelivery Sciences International, Inc. (BDSI), Raleigh, NC. Jun 2014.
- ^ Eriksen J, Jensen NH, Kamp-Jensen M, Bjarnø H, Friis P, Brewster D (1989). "The systemic availability of buprenorphine administered by nasal spray". J. Pharm. Pharmacol. 41 (11): 803–5. doi:10.1111/j.2042-7158.1989.tb06374.x
- Khanna, IK; Pillarisetti, S (2015). "Buprenorphine - an attractive opioid with underutilized potential in treatment of chronic pain". Journal of pain research. 8: 859–70. doi:10.2147/JPR.S85951. PMID 26672499
- Cote, J; Montgomery, L (July 2014). "Sublingual buprenorphine as an analgesic in chronic pain: a systematic review". Pain medicine (Malden, Mass.). 15 (7): 1171–8. doi:10.1111/pme.12386. PMID 24995716
- Ohmori S, Morimoto Y (2002). "Dihydroetorphine: a potent analgesic: pharmacology, toxicology, pharmacokinetics, and clinical effects". CNS Drug Reviews. 8 (4): 391–404. doi:10.1111/j.1527-3458.2002.tb00236.x. ISSN 1080-563X. PMC 6741694. PMID 12481194.
Dihydroetorphine (DHE) is one of the strongest analgesic opioid alkaloids known; it is 1000 to 12,000 times more potent than morphine. ...
MOR is the most commonly used opioid analgesic for pain relief, and its oral daily dose (20 to 1000 mg) is relatively high (44). On the other hand, DHE produces rapid analgesic effects at an extremely low dose, 20 ìg sublingually in humans (60, 78). ... - "Carfentanil". DrugBank Version: 3.0. DrugBank.
- King MA, Su W, Nielan CL, Chang AH, Schütz J, Schmidhammer H, Pasternak GW (17 January 2003). "14-Methoxymetopon, a very potent μ-opioid receptor-selective analgesic with an unusual pharmacological profile". European Journal of Pharmacology. 459 (2): 205. doi:10.1016/s0014-2999(02)02821-2. PMID 12524147. Retrieved 19 February 2024.
Bibliography
- Books
- Cupp M (August 2012). "Equianalgesic Dosing of Opioids for Pain Management. PL Detail-Document #280801" (PDF). Pharmacist's Letter. Archived from the original (PDF) on 2015-02-13. Retrieved 2016-02-05.
- Joishy SK (1999). Palliative medicine secrets. Philadelphia: Hanley & Belfus. p. 97. ISBN 978-1-56053-304-7.
- McCaffery M, Pasero C (1999). Pain: Clinical Manual (2nd ed.). Mosby. ISBN 978-0-8151-5609-3., Extra information, including printable charts
- McPherson ML (2009). Demystifying Opioid Conversion Calculations: A Guide for Effective Dosing. Bethesda MD: American Society of Health-System Pharmacists. p. 5. ISBN 978-1-58528-297-5.
- Articles
- Anderson R, Saiers JH, Abram S, Schlicht C (May 2001). "Accuracy in Equianalgesic Dosing". Journal of Pain and Symptom Management. 21 (5): 397–406. doi:10.1016/S0885-3924(01)00271-8. PMID 11369161.
- Natusch D (February 2012). "Equianalgesic doses of opioids – their use in clinical practice". British Journal of Pain. 6 (1): 43–46. doi:10.1177/2049463712437628. PMC 4590088. PMID 26516465.
- Pereira J, Lawlor P, Vigano A, Dorgan M, Bruera E (August 2001). "Equianalgesic Dose Ratios for Opioids". Journal of Pain and Symptom Management. 22 (2): 672–687. doi:10.1016/s0885-3924(01)00294-9. PMID 11495714.
- Shaheen PE, Walsh D, Lasheen W, Davis MP, Lagman RL (September 2009). "Opioid equianalgesic tables: are they all equally dangerous?". Journal of Pain and Symptom Management. 38 (3): 409–417. doi:10.1016/j.jpainsymman.2009.06.004. ISSN 1873-6513. PMID 19735901.
- Websites
- "Opioid Equianalgesic Table". Lecture Notes. Department of Surgery, University of Toronto. November 2014. Archived from the original on 26 February 2020. Retrieved 26 February 2020.
- Walker P (2001). "Issue 17. Morphine vs Hydromorphone vs Oxycodone vs The Patch". Palliative Care Tips: Info for Health Professionals. Palliative & End of Life Care (PEOLC), Alberta Health Services. Archived from the original on December 24, 2001.
- "Management of Opioid Therapy (OT) for Chronic Pain (2017)" (PDF). VA/DoD Clinical Practice Guidelines. Department of Veterans Affairs. p. 99. Retrieved 26 February 2020.
- Online opioid equianalgesia calculator Electronic calculator that includes logic for bidirectional and dose-dependent conversions
Opioid receptor modulators | |||||
---|---|---|---|---|---|
μ-opioid (MOR) |
| ||||
δ-opioid (DOR) |
| ||||
κ-opioid (KOR) |
| ||||
Nociceptin (NOP) |
| ||||
Others |
|