Misplaced Pages

Phosphate sulfate

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Compound with phosphate and sulfate ions

The phosphate sulfates are mixed anion compounds containing both phosphate and sulfate ions. Related compounds include the arsenate sulfates, phosphate selenates, and arsenate selenates.

Some hydrogen phosphate sulfates are superprotonic conductors.

List

chem mw crystal system space group unit cell volume density comment references
Sanjuanite Al2(PO4)(SO4)(OH)·9H2O
Hotsonite Al11(SO4)3(PO4)2(OH)21 · 16H2O triclinic a=11.23, b=11.66 c=10.55 α=112° 32′, β=107° 32′ γ=64° 27′ refract: α = 1.519 γ = 1.521
Arangasite Al2F(PO4)(SO4)·9H2O monoclinic P2/a a = 7.073, b = 9.634, c = 10.827, β = 100.40°, Z = 2 725.7
peisleyite Na3Al16(SO4)2(PO4)10(OH)17 · 20H2O monoclinic a 13.31, b 12.62, c 23.15, β 110.0°, Z = 2 discredited
peisleyite Na2Al98(OH)6·28H2O triclinic P1 a = 9.28, b = 11.98, c = 13.25, α = 91.3, β = 75.6, γ = 67.67°, Z = 4 1308
Woodhouseite CaAl3(PO4)(SO4)(OH)6 trigonal R3m a = 6.993, c = 16.386 693.95 3.0 Uniaxial (+) nω = 1.636 nε = 1.647 Birefringence: δ = 0.011
Ardéalite Ca2H(PO4)(SO4)•4H2O monoclinic a = 5.721, b = 30.95, c = 6.265, β= 117.26° Z = 4 986.11 2.32
Destinezite Diadochite Fe2(PO4)(SO4)(OH)•6H2O triclinic P1 a = 9.570, b = 9.716, c = 7.313, α = 98.74°, β = 107.90°, γ = 63.86° Z = 2
bohuslavite Fe4(PO4)3(SO4)(OH)(H2O)10·nH2O (5 ≤ n ≤ 14) triclinic P1 a = 13.376 b = 13.338 c = 10.863 α = 92.80, β = 91.03, γ = 119.92°, Z = 2 1675.7 pink
Borickyite (Ca,Mg)(Fe,Al)4(PO4,SO4,CO3)(OH)8·3–7.5H2O
Camaronesite 2(SO4)·1–2H2O trigonal R32 a = 9.0833, c = 42.944, Z = 9 3068.5
Fe4(PO4)3(SO4)(OH)·18H2O triclinic P1 a=13.376, b 13.338, c 10.863, α 92.80, β 91.03, γ 119.92° 1675.7
vanderheydenite Zn6(PO4)2(SO4)(OH)4·7H2O monoclinic P21/n a = 6.204 b = 19.619, c = 7.782, β = 90.67° 947.1 biaxial (–) α = 1.565, β = 1.580 γ = 1.582. 2V = 39.8°
Svanbergite SrAl3(PO4)(SO4)(OH)6 trigonal R3m a = 6.97, c = 16.59 Z=3 697.98 3.2 Uniaxial (+) nω = 1.631 - 1.635 nε = 1.646 - 1.649 Birefringence: δ = 0.015
Birchite Cd2Cu2(PO4)2(SO4) ·5H2O a = 10.489 b = 20.901 c = 6.155 Z=4 1349.6 3.647 biaxial positive,

nα = 1.624, nβ = 1.636, nγ = 1.669, 2Vcalc = +63°.

Corkite PbFe3(OH)6SO4PO4 trigonal R3m a = 7.32, c = 17.02 Z=3 781.2 4.295 Uniaxial (-) nω = 1.930 nε = 1.930 n = 1.93 - 1.96 Birefringence 0.03
BaAl3(PO4)(SO4)(OH)6 trigonal R3m a = , c = Z=3
hinsdalite (Pb,Sr)Al3(PO4)(SO4)(OH)6
Tsumebite Pb2Cu(PO4,SO4)(OH)
Delvauxite CaFe4(PO4,SO4)2(OH)8·4–6H2O
Rossiantonite Al3(PO4)(SO4)2(OH)2(H2O)10·4H2O triclinic P1 a = 10.3410, b = 10.9600, c = 11.1446, α = 86.985, β = 65.727, γ = 75.064°, Z = 2 1110.5
Schlossmacherite (H3O,Ca)Al3(AsO4,PO4,SO4)2(OH)6
Arthurite Cu(Fe)2(AsO4,PO4,SO4)2(O,OH)2·4(H2O)
cobaltarthurite
Phosphoinnelite Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)3 triclinic P1? a = 5.38, b = 7.10, c = 14.76; α = 99.00°, β = 94.94°, γ = 90.14° Z = 1 555 3.82 biaxial (+), α = 1.730, β = 1.745, and γ = 1.764, 2V 90°
Francolite (Ca, Mg, Sr, Na)10(PO4, SO4, CO3)6F2–3
Al4(UO2)2(PO4)4(SO4)(OH)2 · 18H2O
Al4(UO2)2(PO4)4(SO4)(OH)2 · 20H2O
Coconinoite Fe2Al2(UO2)2(PO4)4(SO4)(OH)2 · 20H2O monoclinic C2/c a =12.45, b = 12.96, c = 17.22, β = 105.7°
xiangjiangite Fe2Al2(UO2)2(PO4)4(SO4)(OH)2 · 22H2O tetragonal a = 7.17 Å, b = 7.17 Å, c = 22.22 Å Z=1 1,142 Biaxial (-) nα = 1.558 nβ = 1.576 nγ = 1.593 2V: 87°

Artificial

chem mw crystal system space group unit cell Å volume density comment references
2·HSO4·H2PO4
NH4(HSO4)0.45(H2PO4)0.55 orthorhombic
18-crown·0.50.5·H2O orthrhombic F2dd a=8.710 b= 28.868 c=31.206 Z=16 7846 1.346 dehydrate at 70°
2·HSO4·H2PO4 Monoclinic C2/c a = 28.0787 b = 11.8671 c = 14.1533 β = 100.739° Z=8 4633.46 1.303 colourless; decompose at 353K
(NH2CH2COOH)3(H2SO4)0.7(H3PO4)0.3 monoclinic called TGSP; colourless; ferroelectric, curie point 51 °C; pyroelectric
Na(HSO4)(H3PO4) monoclinic P 21 a = 5.449, b = 6.832, c = 8.718, β = 95.88°, Z = 2  322.8
K2(HSO4)(H2PO4) monoclinic P 21/c a = 11.150, b = 7.371, c = 9.436, β = 92.29°, Z = 4  774.9
K4(HSO4)3(H2PO4) triclinic P 1 a = 7.217, b = 7.521, c = 7.574, α = 71.52°, β = 88.28°, γ = 86.20°, Z = 1  389.1
K4(PO2F2)2(S2O7) 534.46 monoclinic C2/c a = 13.00, b = 7.543, c = 19.01, β = 130.07°, Z = 4 1426.5 2.489 colourless; pyrosulfate + difluorophosphate
K3
H1−xTi2(PO4)3−x(SO4)x (x=0.5–1)
Na2MgTi(SO4)(PO4)2 trigonal R3c a=8.4796 c=21.8091 Z=6 1358.1 2.818
K2MgTi(SO4)(PO4)2 cubic P213 a=9.8743 Z=4 962.84 2.872
Ca10-xNax(PO4)6-x(SO4)xF2 monoclinic
NaFe2(PO4)(SO4)2 hexagonal R3c a=8.4243 c=21.973
NaFe1.4V0.6(PO4)(SO4)2
4(PO4)2(SO4) (C14H10N4=2,2'-bi-1H-benzimidazole) 3331.96 cubic I43d a = 24.964 Z=4 15558 1.423 green
Rb2(HSO4)(H2PO4) monoclinic P21/n a=7.448, b=7.552, c=7.632, β=100.47°, Z=2 422.1
Rb2(HSO4)(H2PO4) monoclinic P21/c a=11.555, b=7.536, c=9.593, β=91.56, Z=4 853.0 at 160K
Rb4(HSO4)3(H2PO4) orthorhombic P21212 a=7.612, b=14.795, c=7.446, Z=2 838.6
18-crown·Rb0.50.5·3H2O monoclinic C2/c a=19.802 b=8.447 c=25.777 β=101.00° Z=8 4232 1.572 dehydrate at 70°
Rb2MgTi(SO4)(PO4)2
Sr4(PO4)2SO4
NaZrMg(PO4)(SO4)2 hexagonal R3c
NaZrCo(PO4)(SO4)2 hexagonal R3c
NaZrNi(PO4)(SO4)2 hexagonal R3c
NaZrCu(PO4)(SO4)2 hexagonal R3c
NaZrZn(PO4)(SO4)2 hexagonal R3c
NaZrAl(PO4)2(SO4) hexagonal R3c
NaZrFe(PO4)2(SO4) hexagonal R3c
H3OSb2(SO4)2(PO4) triclinic P1 a=5.134 b=7.908 c=12.855, α=81.401° β=87.253° γ=86.49°
KSb2(SO4)2(PO4) triclinic P1 a=5.1453 =7.9149 c=12.6146, α=82.054° β=87.715° γ=86.655°
RbSb2(SO4)2(PO4) triclinic P1 a=5.1531 b=7.957 c=12.845, α=81.801° β=87.676° γ=86.703°
Cs2(HSO4)(H2PO4) cubic ao=4.926 >105 °C but can be supercooled
Cs2(HSO4)(H2PO4) monoclinic P21/n a = 7.856 b = 7.732 c = 7.827, β= 99.92° Z=2 468.3 3.261 can substitute 2.3% ammonium; proton conductivity at 110 °C is 3×10 Ωcm
Cs3(HSO4)2(H2PO4) monoclinic C2/c a=19.824 b=7.859 c=19.047 β=100.20° Z=4 1387.2 3.302 stable against water solution 298-313K; phase transition at 411K
Cs4(HSO4)3(H2PO4) monoclinic C2/c a=19.945 b=7.8565 c=8.9949 β=100.119° Z=3 1387.5 3.301 colourless
Cs5(HSO4)2(H2PO4)3 cubic I43d a=14.5668 over 381K goes to tetragonal a=4.965 c=5.016
Cs6H(HSO4)3(H2PO4)4 cubic I43d a=14.4758 3033.38 3.236 colourless
Cs5(HSO4)3(H2PO4)2 monoclinic C2/c a=34.07 Å,b=7.661,c=9.158,β=90.44° 2390 3.198
18-crown·Cs0.50.5·3H2O monoclinic C2/c a=19.840 b=8.460 c=26.19 β=101.14 Z=8 4313 1.689 dehydrate at 70°
CsNH4(HSO4)(H2PO4)
Cs3NH4(HSO4)3(H2PO4)
Cs2MgTi(SO4)(PO4)2
Ba4(PO4)2SO4
NaBa6Zr(PO4)5SO4 cubic I43d a = 10.5449 Z=4 1172.54 eulytite mineral structure
Ba2Sr2(PO4)2SO4
Ba3Sr(PO4)2SO4
Ce2O(HPO4)2(SO4). 4H2O Ce
Ce2O(HPO4)2.4(SO4)0.6. 2H2O Ce
0.5 monoclinic P21/a a=12.999 b=7.150 c=9.212 β=95.33 cream colour
KSr2Eu(PO4)2SO4
RbSr2Eu(PO4)2SO4
CsSr2Eu(PO4)2SO4
0.5 monoclinic P21/a a = 12.938 b = 6.834 c = 9.100 β = 88.12°
Pb2Mg2(PO4)2SO4
MgPb3(PO4)2(SO4) cubic I43d a = 10.299 Z=4 1092.4 5.67
CaPb3(PO4)2(SO4) cubic I43d a = 10.296 Z=4 1091.5 5.77
MnPb3(PO4)2(SO4) cubic I43d a = 10.258 Z=4 1079.4 5.92
CoPb3(PO4)2(SO4) cubic I43d a = 10.356 Z=4 1110.6 5.78
NiPb3(PO4)2(SO4) cubic I43d a = 10.434 Z=4 1135.9 5.65
CuPb3(PO4)2(SO4) cubic I43d a = 10.422 Z=4 1132.0 5.70
ZnPb3(PO4)2(SO4) cubic I43d a = 10.449 Z=4 1140.8 5.67
CdPb3(PO4)2(SO4) cubic I43d a = 10.315 Z=4 1097.5 6.17
SrPb3(PO4)2(SO4) cubic I43d a = 10.369 Z=4 1114.8 5.93
Th2(PO4)2SO4·2 H2O decompose 450 °C

Organic derivatives

A catenated sulfophosphate has the sulfur and phosphorus joined by an oxygen atom. In biochemistry, metabolism of sulfate may use such a group, for example with adenosine-5'-phosphosulfate.

References

  1. Frost, Ray L.; Palmer, Sara J. (September 2011). "A vibrational spectroscopic study of the mixed anion mineral sanjuanite Al2(PO4)(SO4)(OH)·9H2O" (PDF). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 79 (5): 1210–1214. Bibcode:2011AcSpA..79.1210F. doi:10.1016/j.saa.2011.04.044. PMID 21646042.
  2. Beukes, Gerhard J.; Schoch, Aylva E.; Van der Westhuizen, Willem A.; Bok, Louis D. C.; Bruiyn, Hendrik (1984-10-01). "Hotsonite, a new hydrated aluminum-phosphate-sulphate from Pofadder, South Africa". American Mineralogist. 69 (9–10): 979–983. ISSN 0003-004X.
  3. Yakubovich, O. V.; Steele, I. M.; Chernyshev, V. V.; Zayakina, N. V.; Gamyanin, G. N.; Karimova, O. V. (August 2014). "The crystal structure of arangasite, Al 2 F(PO 4 )(SO 4 )·9H 2 O determined using low-temperature synchrotron data". Mineralogical Magazine. 78 (4): 889–903. Bibcode:2014MinM...78..889Y. doi:10.1180/minmag.2014.078.4.09. ISSN 0026-461X. S2CID 94078023.
  4. Pilkington, E. S.; Segnit, E. R.; Watts, J. A. (December 1982). "Peisleyite, a new sodium aluminium sulphate phosphate". Mineralogical Magazine. 46 (341): 449–452. Bibcode:1982MinM...46..449P. doi:10.1180/minmag.1982.046.341.07. ISSN 0026-461X. S2CID 129726668.
  5. Mills, S. J.; Ma, C.; Birch, W. D. (December 2011). "A contribution to understanding the complex nature of peisleyite". Mineralogical Magazine. 75 (6): 2733–2737. Bibcode:2011MinM...75.2733M. doi:10.1180/minmag.2011.075.6.2733. ISSN 0026-461X. S2CID 18661193.
  6. "Woodhouseite". www.mindat.org. Retrieved 2022-05-25.
  7. BALENZANO, F; DELL'ANNA, L.; DI PIERRO, M.; FIORE, S. (1982). "Ardealite, Ca2H(PO4) (SO4).4H2O, un rarissimo fosfato-solfato idrato di calcio: risultati mineralogici preliminari". Ardealite, Ca2H(PO4) (SO4).4H2O, Un Rarissimo Fosfato-solfato Idrato di Calcio: Risultati Mineralogici Preliminari. 38 (2): 899–900. ISSN 0037-8828.
  8. Peacor, Donald R. (1999). "Destinezite ("Diadochite"), Fe2(PO4)(SO4)(OH)·6H2O: Its Crystal Structure and Role as a Soil Mineral at Alum Cave Bluff, Tennessee†". Clays and Clay Minerals. 47 (1): 1–11. Bibcode:1999CCM....47....1P. doi:10.1346/CCMN.1999.0470101. ISSN 0009-8604. S2CID 98406559.
  9. Mauro, Daniela; Biagioni, Cristian; Bonaccorsi, Elena; Hålenius, Ulf; Pasero, Marco; Skogby, Henrik; Zaccarini, Federica; Sejkora, Jiří; Plášil, Jakub; Kampf, Anthony R.; Filip, Jan (2019-12-20). "Bohuslavite, Fe 4 3 + (PO4)3(SO4)(OH)(H2O)10·nH2O, a new hydrated iron phosphate-sulfate". European Journal of Mineralogy. 31 (5–6): 1033–1046. Bibcode:2019EJMin..31.1033M. doi:10.1127/ejm/2019/0031-2892. ISSN 0935-1221. S2CID 213555293.
  10. Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei (June 2012). "Is the mineral borickyite (Ca,Mg)(Fe3+,Al)4(PO4,SO4,CO3)(OH)8·3–7.5H2O the same as delvauxite CaFe43+(PO4,SO4)2(OH)8·4–6H2O?". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 92: 377–381. Bibcode:2012AcSpA..92..377F. doi:10.1016/j.saa.2012.02.102. PMID 22446787.
  11. Kampf, A. R.; Mills, S. J.; Nash, B. P.; Housley, R. M.; Rossman, G. R.; Dini, M. (June 2013). "Camaronesite, [Fe 3+ (H 2 O) 2 (PO 3 OH)] 2 (SO 4 )·1–2H 2 O, a new phosphate-sulfate from the Camarones Valley, Chile, structurally related to taranakite". Mineralogical Magazine. 77 (4): 453–465. Bibcode:2013MinM...77..453K. doi:10.1180/minmag.2013.077.4.05. ISSN 0026-461X. S2CID 129777006.
  12. Mauro, D.; Biagioni, C.; Bonaccorsi, E.; Pasero, M.; Skogby, H.; Zaccarini, F. (2018). "A new iron (III) phosphate-sulfate from Apuan Alps (Tuscany, Italy): a difficult puzzle solved through a multi-technique approach". Congresso Sgi-Simp 2018: 521.
  13. Elliott, Peter; Kolitsch, Uwe (2018-10-31). "Description and crystal structure of vanderheydenite, Zn6(PO4)2(SO4)(OH)4·7H2O, a new mineral from Broken Hill, New South Wales, Australia". European Journal of Mineralogy. 30 (4): 835–840. Bibcode:2018EJMin..30..835E. doi:10.1127/ejm/2018/0030-2750. ISSN 0935-1221. S2CID 134655965.
  14. "Svanbergite". www.mindat.org. Retrieved 2022-05-25.
  15. Elliott, P.; Brugger, J.; Pring, A.; Cole, M. L.; Willis, A. C.; Kolitsch, U. (2008-05-01). "Birchite, a new mineral from Broken Hill, New South Wales, Australia: Description and structure refinement". American Mineralogist. 93 (5–6): 910–917. Bibcode:2008AmMin..93..910E. doi:10.2138/am.2008.2732. ISSN 0003-004X. S2CID 95773593.
  16. "Corkite". www.mindat.org. Retrieved 2022-05-25.
  17. Izbrodin, Ivan A.; Ripp, German S.; Doroshkevich, Anna G. (January 2011). "Aluminium phosphate and phosphate-sulphate minerals in kyanite schists of the Ichetuyskoye area, West Transbaikalia, Russia: crystal chemistry and evolution". Mineralogy and Petrology. 101 (1–2): 81–96. Bibcode:2011MinPe.101...81I. doi:10.1007/s00710-010-0135-5. ISSN 0930-0708. S2CID 129698260.
  18. Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei (August 2011). "A vibrational spectroscopic study of the mineral hinsdalite (Pb,Sr)Al3(PO4)(SO4)(OH)6". Journal of Molecular Structure. 1001 (1–3): 43–48. Bibcode:2011JMoSt1001...43F. doi:10.1016/j.molstruc.2011.06.014.
  19. Frost, Ray L.; Palmer, Sara J. (September 2011). "Vibrational spectroscopic study of the mineral tsumebite Pb2Cu(PO4,SO4)(OH)". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 79 (5): 1794–1797. Bibcode:2011AcSpA..79.1794F. doi:10.1016/j.saa.2011.05.058. PMID 21680232.
  20. Frost, Ray L.; Palmer, Sara J. (April 2011). "A Raman and infrared spectroscopic study of the mineral delvauxite CaFe43+(PO4,SO4)2(OH)8·4–6H2O—A 'colloidal' mineral". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 78 (4): 1250–1254. Bibcode:2011AcSpA..78.1250F. doi:10.1016/j.saa.2010.12.039. PMID 21277823.
  21. Galli, E.; Brigatti, M. F.; Malferrari, D.; Sauro, F.; De Waele, J. (2013-10-01). "Rossiantonite, Al3(PO4)(SO4)2(OH)2(H2O)10{middle dot}4H2O, a new hydrated aluminum phosphate-sulfate mineral from Chimanta massif, Venezuela: Description and crystal structure". American Mineralogist. 98 (10): 1906–1913. doi:10.2138/am.2013.4393. hdl:11585/185099. ISSN 0003-004X. S2CID 102265894.
  22. Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei (February 2012). "Raman spectroscopy of the multi-anion mineral schlossmacherite (H3O,Ca)Al3(AsO4,PO4,SO4)2(OH)6". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 87: 209–213. Bibcode:2012AcSpA..87..209F. doi:10.1016/j.saa.2011.11.040. PMID 22169025.
  23. ^ Palmer, Sara J.; Frost, Ray L. (May 2011). "The structure of the mineral arthurite (AsO4,PO4,SO4)2(O,OH)2·4H2O – A Raman spectroscopic study". Journal of Molecular Structure. 994 (1–3): 283–288. doi:10.1016/j.molstruc.2011.03.034.
  24. Pekov, I. V.; Chukanov, N. V.; Kulikova, I. M.; Belakovsky, D. I. (December 2007). "Phosphoinnelite, Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)3, a new mineral species from peralkaline pegmatite of the Kovdor pluton, Kola Peninsula". Geology of Ore Deposits. 49 (7): 530–536. Bibcode:2007GeoOD..49..530P. doi:10.1134/S1075701507070070. ISSN 1075-7015. S2CID 129616074.
  25. Benmore, Richard A.; Coleman, Max L.; McArthur, John M. (April 1983). "Origin of sedimentary francolite from its sulphur and carbon isotope composition". Nature. 302 (5908): 516–518. Bibcode:1983Natur.302..516B. doi:10.1038/302516a0. ISSN 0028-0836. S2CID 4350036.
  26. ^ Frost, Ray L.; Palmer, Sara J; Čejka, Jiří (September 2011). "The Application of Raman Spectroscopy to the Study of the Uranyl Mineral Coconinoite Fe 2 Al 2 (UO 2 ) 2 (PO 4 ) 4 (SO 4 )(OH) 2 · 20H 2 O". Spectroscopy Letters. 44 (6): 381–387. Bibcode:2011SpecL..44..381F. doi:10.1080/00387010.2010.551445. ISSN 0038-7010. S2CID 96609983.
  27. "Xiangjiangite". www.mindat.org. Retrieved 2022-07-13.
  28. BEKTUROV, AB; NA, DZHUMAGULOVA; ZK, KAIPOVA; RS, ERZHANOVA; VI, LITVINENKO (1980). "RECHERCHES DANS LE DOMAINE DES SULFATOPHOSPHATES. 5. TRANSFORMATIONS THERMIQUES DES MELANGES DE PHOSPHATE ET DE SULFATE D'AMMONIUM MONOSUBSTITUES ET D'HYDROSULFATE-DIHYDRO-PHOSPHATE D'AMMONIUM (NH4)2(HSO4.H2PO4)". Recherches dans le Domaine des Sulfatophosphates. 5. Transformations Thermiques des Melanges de Phosphate et de Sulfate d'Ammonium Monosubstitues et d'Hydrosulfate-Dihydro-Phosphate d'Ammonium (Nh4)2(Hso4.H2Po4).
  29. PubChem. "Diammonium phosphate sulphate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-07-13.
  30. Bouattour, S.; Mhiri, T.; Kolsi, A. W.; Romain, F. (October 1999). "Dielectric, dsc and raman studies of the phase transitions in NH 4 (HSO 4 ) 0.45 (H 2 PO 4 ) 0.55 mixed crystals". Phase Transitions. 70 (1): 19–28. Bibcode:1999PhaTr..70...19B. doi:10.1080/01411599908241337. ISSN 0141-1594.
  31. ^ Braga, Dario; Modena, Enrico; Polito, Marco; Rubini, Katia; Grepioni, Fabrizia (2008). "Crystal forms of highly "dynamic" 18-crown[6] complexes with M[HSO4] and M[H2PO4] (M+ = NH4+, Rb+, Cs+): thermal behaviour and solid-state preparation". New Journal of Chemistry. 32 (10): 1718. doi:10.1039/b805203d. ISSN 1144-0546.
  32. Fábry, Jan; Krupková, Radmila; Císařová, Ivana; Jurek, Karel (2003-03-15). "Bis(tetraethylammonium) hydrogensulfate dihydrogenphosphate at 292 and 150 K". Acta Crystallographica Section C: Crystal Structure Communications. 59 (3): o120 – o123. Bibcode:2003AcCrC..59O.120F. doi:10.1107/S0108270103001471. ISSN 0108-2701. PMID 12711782.
  33. ^ Stiewe, A.; Kemnitz, E. (2000). "Synthese und Kristallstruktur von K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) und Na(HSO4)(H3PO4)". Zeitschrift für Anorganische und Allgemeine Chemie. 626 (9): 2004–2011. doi:10.1002/1521-3749(200009)626:9<2004::AID-ZAAC2004>3.0.CO;2-0.
  34. Zhang, Wenyao; Jin, Wenqi; Yang, Zhihua; Pan, Shilie (2020). "K 4 (PO 2 F 2 ) 2 (S 2 O 7 ): first fluorooxophosphorsulfate with mixed-anion [S 2 O 7 ] 2− and [PO 2 F 2 ] − groups". Dalton Transactions. 49 (48): 17658–17664. doi:10.1039/D0DT03307C. ISSN 1477-9226. PMID 33231582. S2CID 227157666.
  35. von Lampe, F. (June 1969). "Darstellung eines kristallinen Sulfatophosphats, des Kalium-di-sulfato-monophosphats K3[O3SO?PO2?OSO3]". Zeitschrift für anorganische und allgemeine Chemie (in German). 367 (3–4): 170–188. doi:10.1002/zaac.19693670309. ISSN 0044-2313.
  36. Mieritz, Daniel; Davidowski, Stephen K.; Seo, Dong-Kyun (October 2016). "Accessing alkali-free NASICON-type compounds through mixed oxoanion sol–gel chemistry: Hydrogen titanium phosphate sulfate, H1−Ti2(PO4)3−(SO4) (x=0.5–1)". Journal of Solid State Chemistry. 242: 116–125. Bibcode:2016JSSCh.242..116M. doi:10.1016/j.jssc.2016.02.007.
  37. ^ Kanunov, A. E.; Asabina, E. A.; Orlova, A. I. (January 2016). "Preparation and X-ray diffraction study of phosphate sulfates M2MgTi(SO4)(PO4)2". Russian Journal of General Chemistry. 86 (1): 18–25. doi:10.1134/S1070363216010047. ISSN 1070-3632. S2CID 102011872.
  38. Apella, M. C.; Baran, E. J. (1981-05-01). "Zur Kristallstruktur der gemischten Phosphat/Sulfat-Fluorapatite / On the Crystal Structure of Mixed Phosphate/Sulfate Fluoroapatites". Zeitschrift für Naturforschung B. 36 (5): 644–645. doi:10.1515/znb-1981-0517. ISSN 1865-7117. S2CID 97118097.
  39. Ben Yahia, Hamdi; Essehli, Rachid; Amin, Ruhul; Boulahya, Khalid; Okumura, Toyoki; Belharouak, Ilias (2018-04-01). "Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2". Journal of Power Sources. 382: 144–151. Bibcode:2018JPS...382..144B. doi:10.1016/j.jpowsour.2018.02.021. ISSN 0378-7753. OSTI 1495971.
  40. Essehli, Rachid; Alkhateeb, Alaa; Mahmoud, Abdelfattah; Boschini, Frèdéric; Ben Yahia, Hamdi; Amin, Ruhul; Belharouak, Ilias (September 2020). "Optimization of the compositions of polyanionic sodium-ion battery cathode NaFe2−xVx(PO4)(SO4)2". Journal of Power Sources. 469: 228417. Bibcode:2020JPS...46928417E. doi:10.1016/j.jpowsour.2020.228417. OSTI 1633153. S2CID 225331939.
  41. Ling, Chun-Sheng; Yan, Lin (2008-11-15). "Tetrakis[tris(2,2′-bi-1 H -benzimidazole)nickel(II)] bis(phosphate) sulfate". Acta Crystallographica Section E: Structure Reports Online. 64 (11): m1399. Bibcode:2008AcCrE..64m1399L. doi:10.1107/S1600536808032571. ISSN 1600-5368. PMC 2959627. PMID 21580849.
  42. ^ Komornikov, V. A.; Grebenev, V. V.; Andreev, P. V.; Dmitricheva, E. V. (May 2015). "Study of phase equilibria in the Rb3H(SO4)2-RbH2PO4-H2O system". Crystallography Reports. 60 (3): 431–437. Bibcode:2015CryRp..60..431K. doi:10.1134/S1063774515030086. ISSN 1063-7745. S2CID 101238604.
  43. ^ Stiewe, A.; Sonntag, R.; Troyanov, S.I.; Hansen, T.; Kemnitz, E. (January 2000). "Synthesis and Structure Determination of Rb2(HSO4)(H2PO4) and Rb4(HSO4)3(H2PO4) by X-Ray Single Crystal and Neutron Powder Diffraction". Journal of Solid State Chemistry. 149 (1): 9–15. Bibcode:2000JSSCh.149....9S. doi:10.1006/jssc.1999.8468.
  44. ^ Pet’kov, V. I.; Dmitrienko, A. S.; Bokov, A. I. (July 2018). "Thermal expansion of phosphate–sulfates of eulytite structure". Journal of Thermal Analysis and Calorimetry. 133 (1): 199–205. doi:10.1007/s10973-017-6676-7. ISSN 1388-6150. S2CID 104200610.
  45. ^ Savinykh, D. O.; Khainakov, S. A.; Orlova, A. I.; Garcia-Granda, S. (June 2018). "New Phosphate-Sulfates with NZP Structure". Russian Journal of Inorganic Chemistry. 63 (6): 714–724. doi:10.1134/S0036023618060207. hdl:10651/50903. ISSN 0036-0236. S2CID 105627248.
  46. ^ Zhao, Xiao; Mei, Dajiang; Xu, Jingli; Wu, Yuandong (February 2016). "A Sb 2 (SO 4 ) 2 (PO 4 ) ( A = H 3 O + , K, Rb): Layered Structure Containing Ordered Sulfate and Phosphate Anions: A Sb 2 (SO 4 ) 2 (PO 4 ) ( A = H 3 O + , K, Rb". Zeitschrift für anorganische und allgemeine Chemie. 642 (4): 343–349. doi:10.1002/zaac.201500743.
  47. Chisholm, C (2000-11-02). "Superprotonic behavior of Cs2(HSO4)(H2PO4) – a new solid acid in the CsHSO4–CsH2PO4 system". Solid State Ionics. 136–137 (1–2): 229–241. doi:10.1016/S0167-2738(00)00315-5.
  48. Chisholm, Calum R. I.; Haile, Sossina M. (1999-12-01). "Structure and thermal behavior of the new superprotonic conductor Cs 2 (HSO 4 )(H 2 PO 4 )". Acta Crystallographica Section B: Structural Science. 55 (6): 937–946. Bibcode:1999AcCrB..55..937C. doi:10.1107/S0108768199009921. ISSN 0108-7681. PMID 10927436.
  49. Hayashi, Shigenobu; Jimura, Keiko (November 2017). "Incorporation of ammonium ions in Cs2(HSO4)(H2PO4) confirmed by solid-state NMR". Solid State Ionics. 311: 83–89. doi:10.1016/j.ssi.2017.09.015.
  50. Makarova, I. P.; Grebenev, V. V.; Vasiliev, I. I.; Dmitricheva, E. V.; Komornikov, V. A.; Dolbinina, V. V. (July 2015). "Investigation of the structure of Cs3(HSO4)2(H2PO4) single crystals". Crystallography Reports. 60 (4): 498–507. Bibcode:2015CryRp..60..498M. doi:10.1134/S1063774515040148. ISSN 1063-7745. S2CID 93224453.
  51. Makarova, I. P.; Grebenev, V. V.; Vasil’ev, I. I.; Dmitricheva, E. V.; Komornikov, V. A.; Dolbinina, V. V.; Mikheikin, A. S. (January 2016). "Structure of Cs4(HSO4)3(H2PO4) single crystals". Crystallography Reports. 61 (1): 18–23. Bibcode:2016CryRp..61...18M. doi:10.1134/S1063774516010119. ISSN 1063-7745. S2CID 101823664.
  52. Makarova, Irina; Grebenev, Vadim; Dmitricheva, Elena; Vasiliev, Ilya; Komornikov, Vladimir; Dolbinina, Valentina; Mikheykin, Alexey (2016-02-01). "M m H n ( X O 4 ) ( m + n )/2 crystals: structure, phase transitions, hydrogen bonds, conductivity. II. Structure and properties of Cs 3 (HSO 4 ) 2 (H 2 PO 4 ) and Cs 4 (HSO 4 ) 3 (H 2 PO 4 ) single crystals". Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 72 (1): 133–141. doi:10.1107/S2052520615023069. ISSN 2052-5206. PMID 26830805.
  53. Grebenev, V. V.; Makarova, I. P.; Ksenofontov, D. A.; Komornikov, V. A.; Dmitricheva, E. V. (November 2013). "Phase transitions in Cs5(HSO4)2(H2PO4)3 crystal". Crystallography Reports. 58 (6): 894–898. Bibcode:2013CryRp..58..894G. doi:10.1134/S1063774513060138. ISSN 1063-7745. S2CID 94005540.
  54. Makarova, I. P.; Grebenev, V. V.; Komornikov, V. A.; Selezneva, E. V. (November 2016). "New crystals of the CsHSO4–CsH2PO4–H2O system". Crystallography Reports. 61 (6): 918–922. Bibcode:2016CryRp..61..918M. doi:10.1134/S1063774516060079. ISSN 1063-7745. S2CID 99983650.
  55. Haile, Sossina M.; Calkins, Pamela M. (November 1998). "X-Ray Diffraction Study of Cs5(HSO4)3(H2PO4)2, a New Solid Acid with a Unique Hydrogen-Bond Network". Journal of Solid State Chemistry. 140 (2): 251–265. Bibcode:1998JSSCh.140..251H. doi:10.1006/jssc.1998.7884.
  56. ^ Komornikov, V. A.; Timakov, I. S.; Zajnullin, O. B.; Grebenev, V. V.; Makarova, I. P.; Selezneva, E. V.; Ksenofontov, D. A. (November 2019). "New Crystals in the CsHSO4–CsH2PO4–NH4H2PO4–H2O System". Crystallography Reports. 64 (6): 984–990. Bibcode:2019CryRp..64..984K. doi:10.1134/S1063774519060105. ISSN 1063-7745. S2CID 209509678.
  57. König, K.-H.; Eckstein, G. (December 1972). "Amorphe und kristalline cer(IV)-phosphate als ionenaustauscher—IV Makrosorption, tracersorption und nuklidtrennungen an kristallinen cer(IV)-phosphatsulfaten". Journal of Inorganic and Nuclear Chemistry (in German). 34 (12): 3771–3779. doi:10.1016/0022-1902(72)80024-1.
  58. König, K.-H.; Eckstein, G. (April 1973). "Kationenaustausch an kristallinen Cer(III)-phosphatsulfaten". Journal of Inorganic and Nuclear Chemistry (in German). 35 (4): 1359–1367. doi:10.1016/0022-1902(73)80210-6.
  59. Wang, Dan; Yu, Ranbo; Xu, Yaohua; Feng, Shouhua; Xu, Ruren; Kumada, Nobuhiro; Kinomura, Nobukazu; Matsumura, Yasuyuki; Takano, Mikio (November 2002). "The First Organically Templated Layered Cerium Phosphate-Hydrogen Sulfate: [enH 2 ] 0.5 [Ce III (PO 4 )(HSO 4 )(OH 2 )]". Chemistry Letters. 31 (11): 1120–1121. doi:10.1246/cl.2002.1120. ISSN 0366-7022.
  60. Kumada, Nobuhiro; Kumon, Junichi; Miyagawa, Kazuya; Yonesaki, Yoshinori; Takei, Takahiro; Kinomura, Nobukazu; Wang, Dan; Yu, Ranbo (2010). "Preparation and crystal structure of [enH2]0.5[Ho(HPO4)(SO4)(H2O)] (en; ethylenediamine)". Journal of the Ceramic Society of Japan. 118 (1375): 236–240. doi:10.2109/jcersj2.118.236. ISSN 1348-6535. S2CID 98263946.
  61. ^ Durif, A. (1957). C. R. Hebd. Séances Acad. Sci. 245: 1151–1152. {{cite journal}}: Missing or empty |title= (help)
  62. Brandel, Vladimir; Dacheux, Nicolas; Rousselle, Jérôme; Genet, Michel (August 2002). "Synthesis of some new thorium phosphates". Comptes Rendus Chimie. 5 (8–9): 599–606. doi:10.1016/S1631-0748(02)01419-4.
  63. PubChem. "Adenosine-5'-phosphosulfate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-07-14.
Phosphates
H3PO4

He
Li3PO4 Be BPO4
+BO3
C (NH4)3PO4
(NH4)2HPO4
NH4H2PO4
-N
O +F Ne
Na3PO4
Na2HPO4
NaH2PO4
Mg3(PO4)2 AlPO4 Si P +SO4
-S
Cl Ar
K3PO4
K2HPO4
KH2PO4
Ca3(PO4)2 ScPO4 Ti VPO4 CrPO4 Mn3(PO4)2
MnPO4
Fe3(PO4)2
FePO4
Co3(PO4)2 Ni3(PO4)2 Cu3(PO4)2 Zn3(PO4)2 GaPO4 Ge As -Se Br Kr
Rb3PO4 Sr3(PO4)2 YPO4 Zr3(PO4)4 Nb Mo Tc Ru Rh Pd Ag3PO4 Cd3(PO4)2 InPO4 Sn SbPO4
-SbO4
Te I Xe
Cs3PO4 Ba3(PO4)2 * LuPO4 Hf Ta W Re Os Ir Pt AuPO4 Hg Tl3PO4 Pb3(PO4)2 BiPO4 Po At Rn
Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaPO4 CePO4 PrPO4 NdPO4 PmPO4 SmPO4 EuPO4 GdPO4 TbPO4 DyPO4 HoPO4 ErPO4 TmPO4 YbPO4
** AcPO4 Th3(PO4)4 Pa U(PO4)2 Np PuPO4 AmPO4 CmPO4 Bk Cf Es Fm Md No
Compounds containing the sulfate group (SO2−4)
H2SO4 He
Li2SO4 BeSO4 B2S2O9
-BO3
+BO3
esters
ROSO−3
(RO)2SO2
+CO3
+C2O4
(NH4)2SO4
[N2H5]HSO4
(NH3OH)2SO4
NOHSO4
+NO3
H2OSO4 +F Ne
Na2SO4
NaHSO4
MgSO4 Al2(SO4)3
Al2SO4(OAc)4
Si +PO4 SO2−4
HSO3HSO4
(HSO4)2
+SO3
+Cl Ar
K2SO4
KHSO4
CaSO4 Sc2(SO4)3 TiOSO4 VSO4
V2(SO4)3
VOSO4
CrSO4
Cr2(SO4)3
MnSO4 FeSO4
Fe2(SO4)3
CoSO4
Co2(SO4)3
NiSO4
Ni2(SO4)3
CuSO4
Cu2SO4
SO4
ZnSO4 Ga2(SO4)3 Ge(SO4)2 As +SeO3 +Br Kr
RbHSO4
Rb2SO4
SrSO4 Y2(SO4)3 Zr(SO4)2 Nb2O2(SO4)3 MoO(SO4)2
MoO2(SO4)
Tc Ru(SO4)2 Rh2(SO4)3 PdSO4 Ag2SO4
AgSO4
CdSO4 In2(SO4)3 SnSO4
Sn(SO4)2
Sb2(SO4)3 TeOSO4 I2(SO4)3
(IO)2SO4
+IO3
Xe
Cs2SO4
CsHSO4
BaSO4 * Lu2(SO4)3 Hf(SO4)2 Ta WO(SO4)2 Re2O5(SO4)2 OsSO4
Os2(SO4)3
Os(SO4)2
IrSO4
Ir2(SO4)3
Pt2(SO4)5 AuSO4
Au2(SO4)3
Hg2SO4
HgSO4
Tl2SO4
Tl2(SO4)3
PbSO4
Pb(SO4)2
Bi2(SO4)3 PoSO4
Po(SO4)2
At Rn
Fr RaSO4 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* La2(SO4)3 Ce2(SO4)3
Ce(SO4)2
Pr2(SO4)3 Nd2(SO4)3 Pm2(SO4)3 Sm2(SO4)3 EuSO4
Eu2(SO4)3
Gd2(SO4)3 Tb2(SO4)3 Dy2(SO4)3 Ho2(SO4)3 Er2(SO4)3 Tm2(SO4)3 Yb2(SO4)3
** Ac2(SO4)3 Th(SO4)2 Pa U2(SO4)3
U(SO4)2
UO2SO4
Np(SO4)2 Pu(SO4)2 Am2(SO4)3 Cm2(SO4)3 Bk Cf2(SO4)3 Es Fm Md No
Categories: