Misplaced Pages

ERBB3

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Protein found in humans

ERBB3
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

1M6B, 2L9U, 3KEX, 3LMG, 3P11, 4LEO, 4OTW, 4P59, 4RIW, 4RIX, 4RIY, 5CUS

Identifiers
AliasesERBB3, ErbB-3, HER3, LCCS2, MDA-BF-1, c-erbB-3, c-erbB3, erbB3-S, p180-ErbB3, p45-sErbB3, p85-sErbB3, erb-b2 receptor tyrosine kinase 3, FERLK, VSCN1
External IDsOMIM: 190151; MGI: 95411; HomoloGene: 20457; GeneCards: ERBB3; OMA:ERBB3 - orthologs
Gene location (Human)
Chromosome 12 (human)
Chr.Chromosome 12 (human)
Chromosome 12 (human)Genomic location for ERBB3Genomic location for ERBB3
Band12q13.2Start56,076,799 bp
End56,103,505 bp
Gene location (Mouse)
Chromosome 10 (mouse)
Chr.Chromosome 10 (mouse)
Chromosome 10 (mouse)Genomic location for ERBB3Genomic location for ERBB3
Band10 D3|10 77.1 cMStart128,403,392 bp
End128,425,521 bp
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • trigeminal ganglion

  • jejunal mucosa

  • spinal ganglia

  • inferior ganglion of vagus nerve

  • corpus callosum

  • mucosa of colon

  • mucosa of ileum

  • mucosa of sigmoid colon

  • duodenum

  • external globus pallidus
Top expressed in
  • left colon

  • jejunum

  • ileum

  • intestinal villus

  • transitional epithelium of urinary bladder

  • lacrimal gland

  • epidermis

  • hair follicle

  • conjunctival fornix

  • sciatic nerve
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

2065

13867

Ensembl

ENSG00000065361

ENSMUSG00000018166

UniProt

P21860

Q61526

RefSeq (mRNA)

NM_001982
NM_001005915

NM_010153

RefSeq (protein)

NP_001005915
NP_001973

NP_034283

Location (UCSC)Chr 12: 56.08 – 56.1 MbChr 10: 128.4 – 128.43 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

Receptor tyrosine-protein kinase erbB-3, also known as HER3 (human epidermal growth factor receptor 3), is a membrane bound protein that in humans is encoded by the ERBB3 gene.

ErbB3 is a member of the epidermal growth factor receptor (EGFR/ERBB) family of receptor tyrosine kinases. The kinase-impaired ErbB3 is known to form active heterodimers with other members of the ErbB family, most notably the ligand binding-impaired ErbB2.

Gene and expression

The human ERBB3 gene is located on the long arm of chromosome 12 (12q13). It is encoded by 23,651 base pairs and translates into 1342 amino acids.

During human development, ERBB3 is expressed in skin, bone, muscle, nervous system, heart, lungs, and intestinal epithelium. ERBB3 is expressed in normal adult human gastrointestinal tract, reproductive system, skin, nervous system, urinary tract, and endocrine system.

Structure

ErbB3, like the other members of the ErbB receptor tyrosine kinase family, consists of an extracellular domain, a transmembrane domain, and an intracellular domain. The extracellular domain contains four subdomains (I-IV). Subdomains I and III are leucine-rich and are primarily involved in ligand binding. Subdomains II and IV are cysteine-rich and most likely contribute to protein conformation and stability through the formation of disulfide bonds. Subdomain II also contains the dimerization loop required for dimer formation. The cytoplasmic domain contains a juxtamembrane segment, a kinase domain, and a C-terminal domain.

Unliganded receptor adopts a conformation that inhibits dimerization. Binding of neuregulin to the ligand binding subdomains (I and III) induces a conformational change in ErbB3 that causes the protrusion of the dimerization loop in subdomain II, activating the protein for dimerization.

Function

ErbB3 has been shown to bind the ligands heregulin and NRG-2. Ligand binding causes a change in conformation that allows for dimerization, phosphorylation, and activation of signal transduction. ErbB3 can heterodimerize with any of the other three ErbB family members. The theoretical ErbB3 homodimer would be non-functional because the kinase-impaired protein requires transphosphorylation by its binding partner to be active.

Unlike the other ErbB receptor tyrosine kinase family members which are activated through autophosphorylation upon ligand binding, ErbB3 was found to be kinase impaired, having only 1/1000 the autophosphorylation activity of EGFR and no ability to phosphorylate other proteins. Therefore, ErbB3 must act as an allosteric activator.

Interaction with ErbB2

The ErbB2-ErbB3 dimer is considered the most active of the possible ErbB dimers, in part because ErbB2 is the preferred dimerization partner of all the ErbB family members, and ErbB3 is the preferred partner of ErbB2. This heterodimer conformation allows the signaling complex to activate multiple pathways including the MAPK, PI3K/Akt, and PLCγ. There is also evidence that the ErbB2-ErbB3 heterodimer can bind and be activated by EGF-like ligands.

Activation of the PI3K/Akt pathway

The intracellular domain of ErbB3 contains 6 recognition sites for the SH2 domain of the p85 subunit of PI3K. ErbB3 binding causes the allosteric activation of p110α, the lipid kinase subunit of PI3K, a function not found in either EGFR or ErbB2.

Role in cancer

While no evidence has been found that ErbB3 overexpression, constitutive activation, or mutation alone is oncogenic, the protein as a heterodimerization partner, most critically with ErbB2, is implicated in growth, proliferation, chemotherapeutic resistance, and the promotion of invasion and metastasis.

ErbB3 is associated with targeted therapeutic resistance in numerous cancers including resistance to:

  • HER2 inhibitors in HER2+ breast cancers
  • anti-estrogen therapy in ER breast cancers
  • EGFR inhibitors in lung and head and neck cancers
  • hormones in prostate cancers
  • IGF1R inhibitors in hepatomas
  • BRAF inhibitors in melanoma

ErbB2 overexpression may promote the formation of active heterodimers with ErbB3 and other ErbB family members without the need for ligand binding, resulting in weak but constitutive signaling activity.

Role in normal development

ERBB3 is expressed in the mesenchyme of the endocardial cushion, which will later develop into the valves of the heart. ErbB3 null mouse embryos show severely underdeveloped atrioventricular valves, leading to death at embryonic day 13.5. Although this function of ErbB3 depends on neuregulin, it does not seem to require ErbB2, which is not expressed in the tissue.

ErbB3 also seems to be required for neural crest differentiation and the development of the sympathetic nervous system and neural crest derivatives such as Schwann cells.

See also

References

  1. ^ GRCh38: Ensembl release 89: ENSG00000065361Ensembl, May 2017
  2. ^ GRCm38: Ensembl release 89: ENSMUSG00000018166Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "ERBB3 Gene – GeneCards | ERBB3 Protein".
  6. Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A, McGrath J, et al. (December 1985). "Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene". Science. 230 (4730): 1132–1139. Bibcode:1985Sci...230.1132C. doi:10.1126/science.2999974. PMID 2999974.
  7. Prigent SA, Lemoine NR, Hughes CM, Plowman GD, Selden C, Gullick WJ (July 1992). "Expression of the c-erbB-3 protein in normal human adult and fetal tissues". Oncogene. 7 (7): 1273–1278. PMID 1377811.
  8. Cho HS, Leahy DJ (August 2002). "Structure of the extracellular region of HER3 reveals an interdomain tether". Science. 297 (5585): 1330–1333. Bibcode:2002Sci...297.1330C. doi:10.1126/science.1074611. PMID 12154198. S2CID 23069349.
  9. ^ Roskoski R (January 2014). "The ErbB/HER family of protein-tyrosine kinases and cancer". Pharmacological Research. 79: 34–74. doi:10.1016/j.phrs.2013.11.002. PMID 24269963.
  10. Carraway KL, Sliwkowski MX, Akita R, Platko JV, Guy PM, Nuijens A, et al. (May 1994). "The erbB3 gene product is a receptor for heregulin". The Journal of Biological Chemistry. 269 (19): 14303–14306. doi:10.1016/S0021-9258(17)36789-3. PMID 8188716.
  11. Carraway KL, Weber JL, Unger MJ, Ledesma J, Yu N, Gassmann M, et al. (May 1997). "Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases". Nature. 387 (6632): 512–516. Bibcode:1997Natur.387R.512C. doi:10.1038/387512a0. PMID 9168115. S2CID 4310136.
  12. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA (April 2010). "ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation". Proceedings of the National Academy of Sciences of the United States of America. 107 (17): 7692–7697. Bibcode:2010PNAS..107.7692S. doi:10.1073/pnas.1002753107. PMC 2867849. PMID 20351256.
  13. Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, et al. (October 1996). "A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor". Molecular and Cellular Biology. 16 (10): 5276–5287. doi:10.1128/MCB.16.10.5276. PMC 231527. PMID 8816440.
  14. ^ Citri A, Skaria KB, Yarden Y (March 2003). "The deaf and the dumb: the biology of ErbB-2 and ErbB-3". Experimental Cell Research. 284 (1): 54–65. doi:10.1016/s0014-4827(02)00101-5. PMID 12648465.
  15. Pinkas-Kramarski R, Lenferink AE, Bacus SS, Lyass L, van de Poll ML, Klapper LN, et al. (March 1998). "The oncogenic ErbB-2/ErbB-3 heterodimer is a surrogate receptor of the epidermal growth factor and betacellulin". Oncogene. 16 (10): 1249–1258. doi:10.1038/sj.onc.1201642. PMID 9546426. S2CID 25652800.
  16. Alimandi M, Wang LM, Bottaro D, Lee CC, Kuo A, Frankel M, et al. (September 1997). "Epidermal growth factor and betacellulin mediate signal transduction through co-expressed ErbB2 and ErbB3 receptors". The EMBO Journal. 16 (18): 5608–5617. doi:10.1093/emboj/16.18.5608. PMC 1170193. PMID 9312020.
  17. Prigent SA, Gullick WJ (June 1994). "Identification of c-erbB-3 binding sites for phosphatidylinositol 3'-kinase and SHC using an EGF receptor/c-erbB-3 chimera". The EMBO Journal. 13 (12): 2831–2841. doi:10.1002/j.1460-2075.1994.tb06577.x. PMC 395164. PMID 8026468.
  18. Zhang K, Sun J, Liu N, Wen D, Chang D, Thomason A, et al. (February 1996). "Transformation of NIH 3T3 cells by HER3 or HER4 receptors requires the presence of HER1 or HER2". The Journal of Biological Chemistry. 271 (7): 3884–3890. doi:10.1074/jbc.271.7.3884. PMID 8632008. S2CID 7190224.
  19. Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF, Hynes NE (July 2003). "The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation". Proceedings of the National Academy of Sciences of the United States of America. 100 (15): 8933–8938. Bibcode:2003PNAS..100.8933H. doi:10.1073/pnas.1537685100. PMC 166416. PMID 12853564.
  20. Wang S, Huang X, Lee CK, Liu B (July 2010). "Elevated expression of erbB3 confers paclitaxel resistance in erbB2-overexpressing breast cancer cells via upregulation of Survivin". Oncogene. 29 (29): 4225–4236. doi:10.1038/onc.2010.180. PMID 20498641. S2CID 22169790.
  21. Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM, et al. (January 2007). "Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3". Nature. 445 (7126): 437–441. Bibcode:2007Natur.445..437S. doi:10.1038/nature05474. PMC 3025857. PMID 17206155.
  22. Osipo C, Meeke K, Cheng D, Weichel A, Bertucci A, Liu H, et al. (February 2007). "Role for HER2/neu and HER3 in fulvestrant-resistant breast cancer". International Journal of Oncology. 30 (2): 509–520. doi:10.3892/ijo.30.2.509 (inactive 1 November 2024). PMID 17203234.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  23. Miller TW, Pérez-Torres M, Narasanna A, Guix M, Stål O, Pérez-Tenorio G, et al. (May 2009). "Loss of Phosphatase and Tensin homologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor signaling to promote antiestrogen resistance in breast cancer". Cancer Research. 69 (10): 4192–4201. doi:10.1158/0008-5472.CAN-09-0042. PMC 2724871. PMID 19435893.
  24. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. (May 2007). "MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling". Science. 316 (5827): 1039–1043. Bibcode:2007Sci...316.1039E. doi:10.1126/science.1141478. PMID 17463250. S2CID 23254145.
  25. Erjala K, Sundvall M, Junttila TT, Zhang N, Savisalo M, Mali P, et al. (July 2006). "Signaling via ErbB2 and ErbB3 associates with resistance and epidermal growth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells". Clinical Cancer Research. 12 (13): 4103–4111. doi:10.1158/1078-0432.CCR-05-2404. PMID 16818711. S2CID 5571305.
  26. Zhang Y, Linn D, Liu Z, Melamed J, Tavora F, Young CY, et al. (October 2008). "EBP1, an ErbB3-binding protein, is decreased in prostate cancer and implicated in hormone resistance". Molecular Cancer Therapeutics. 7 (10): 3176–3186. doi:10.1158/1535-7163.MCT-08-0526. PMC 2629587. PMID 18852121.
  27. Desbois-Mouthon C, Baron A, Blivet-Van Eggelpoël MJ, Fartoux L, Venot C, Bladt F, et al. (September 2009). "Insulin-like growth factor-1 receptor inhibition induces a resistance mechanism via the epidermal growth factor receptor/HER3/AKT signaling pathway: rational basis for cotargeting insulin-like growth factor-1 receptor and epidermal growth factor receptor in hepatocellular carcinoma". Clinical Cancer Research. 15 (17): 5445–5456. doi:10.1158/1078-0432.CCR-08-2980. PMID 19706799. S2CID 207699374.
  28. Kugel CH, Hartsough EJ, Davies MA, Setiady YY, Aplin AE (August 2014). "Function-blocking ERBB3 antibody inhibits the adaptive response to RAF inhibitor". Cancer Research. 74 (15): 4122–4132. doi:10.1158/0008-5472.CAN-14-0464. PMC 4120074. PMID 25035390.
  29. Riethmacher D, Sonnenberg-Riethmacher E, Brinkmann V, Yamaai T, Lewin GR, Birchmeier C (October 1997). "Severe neuropathies in mice with targeted mutations in the ErbB3 receptor". Nature. 389 (6652): 725–730. Bibcode:1997Natur.389..725R. doi:10.1038/39593. PMID 9338783. S2CID 28741273.
  30. Britsch S, Li L, Kirchhoff S, Theuring F, Brinkmann V, Birchmeier C, et al. (June 1998). "The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system". Genes & Development. 12 (12): 1825–1836. doi:10.1101/gad.12.12.1825. PMC 316903. PMID 9637684.
  31. Davies AM (January 1998). "Neuronal survival: early dependence on Schwann cells". Current Biology. 8 (1): R15 – R18. Bibcode:1998CBio....8..R15D. doi:10.1016/s0960-9822(98)70009-0. PMID 9427620. S2CID 2745201.

Further reading

PDB gallery
  • 1m6b: Structure of the HER3 (ERBB3) Extracellular Domain 1m6b: Structure of the HER3 (ERBB3) Extracellular Domain
Tumor suppressor genes and Oncogenes
Ligand
Growth factors
ONCO
Receptor
Wnt signaling pathway
TSP
Hedgehog signaling pathway
TSP
TGF beta signaling pathway
TSP
Receptor tyrosine kinase
ONCO
JAK-STAT signaling pathway
ONCO
Intracellular signaling P+Ps
Wnt signaling pathway
ONCO
TSP
TGF beta signaling pathway
TSP
Akt/PKB signaling pathway
ONCO
TSP
Hippo signaling pathway
TSP
MAPK/ERK pathway
ONCO
TSP
Other/unknown
ONCO
TSP
Nucleus
Cell cycle
ONCO
TSP
DNA repair/Fanconi
TSP
Ubiquitin ligase
ONCO
TSP
Transcription factor
ONCO
TSP
Mitochondrion
Apoptosis inhibitor
Other/ungrouped
Tumor markers
Blood
Lymphoma
Lymphosarcoma
Endocrine
Thyroid cancer
Pheochromocytoma
Neuroendocrine tumors
Neuroblastoma
Nervous system
Brain tumor
Astrocytoma
NC/Melanoma
Cardiovascular/
respiratory
Lung cancer
Hemangiosarcoma (endothelium)
Digestive
Colorectal cancer
Pancreatic cancer
Hepatocellular carcinoma
Reproductive/
urinary/
breast
Ovarian tumor
Testicular cancer
Prostate cancer
Germ cell tumor
Bladder cancer
Breast cancer
General histology
Sarcoma
Carcinoma (epithelium)
Musculoskeletal
Rhabdomyosarcoma
Protein kinases: tyrosine kinases (EC 2.7.10)
Receptor tyrosine kinases (EC 2.7.10.1)
Growth factor receptors
EGF receptor family
Insulin receptor family
PDGF receptor family
FGF receptor family
VEGF receptors family
HGF receptor family
Trk receptor family
EPH receptor family
LTK receptor family
TIE receptor family
ROR receptor family
DDR receptor family
PTK7 receptor family
RYK receptor family
MuSK receptor family
ROS receptor family
AATYK receptor family
AXL receptor family
RET receptor family
uncategorised
Non-receptor tyrosine kinases (EC 2.7.10.2)
ABL family
ACK family
CSK family
FAK family
FES family
FRK family
JAK family
SRC-A family
SRC-B family
TEC family
SYK family
Enzymes
Activity
Regulation
Classification
Kinetics
Types
Growth factor receptor modulators
Angiopoietin
CNTF
EGF (ErbB)
EGF
(ErbB1/HER1)
ErbB2/HER2
  • Agonists: Unknown/none
ErbB3/HER3
ErbB4/HER4
FGF
FGFR1
FGFR2
FGFR3
FGFR4
Unsorted
HGF (c-Met)
IGF
IGF-1
IGF-2
Others
LNGF (p75)
PDGF
RET (GFL)
GFRα1
GFRα2
GFRα3
GFRα4
Unsorted
SCF (c-Kit)
TGFβ
Trk
TrkA
  • Negative allosteric modulators: VM-902A
TrkB
TrkC
VEGF
Others
  • Additional growth factor receptor modulators: Cerebrolysin (neurotrophin mixture)
Portal: Categories: