Misplaced Pages

Nucleoside analogue

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Nucleotide analog) Biochemical compound
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Nucleoside analogue" – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this message)
You can help expand this article with text translated from the corresponding article in German. (December 2020) Click for important translation instructions.
  • View a machine-translated version of the German article.
  • Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Misplaced Pages.
  • Consider adding a topic to this template: there are already 2,159 articles in the main category, and specifying|topic= will aid in categorization.
  • Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article.
  • You must provide copyright attribution in the edit summary accompanying your translation by providing an interlanguage link to the source of your translation. A model attribution edit summary is Content in this edit is translated from the existing German Misplaced Pages article at ]; see its history for attribution.
  • You may also add the template {{Translated|de|Nukleosid-Analogon}} to the talk page.
  • For more guidance, see Misplaced Pages:Translation.
The antiviral drug aciclovir (bottom), a nucleoside analogue that functions by mimicking guanosine (top)

Nucleoside analogues are structural analogues of a nucleoside, which normally contain a nucleobase and a sugar. Nucleotide analogues are analogues of a nucleotide, which normally has one to three phosphates linked to a nucleoside. Both types of compounds can deviate from what they mimick in a number of ways, as changes can be made to any of the constituent parts (nucleobase, sugar, phosphate). They are related to nucleic acid analogues.

Nucleoside and nucleotide analogues can be used in therapeutic drugs, including a range of antiviral products used to prevent viral replication in infected cells. The most commonly used is acyclovir.

Nucleotide and nucleoside analogues can also be found naturally. Examples include ddhCTP (3ʹ-deoxy-3′,4ʹdidehydro-CTP) produced by the human antiviral protein viperin and sinefungin (a S-Adenosyl methionine analogue) produced by some Streptomyces.

Function

These agents can be used against hepatitis B virus, hepatitis C virus, herpes simplex, and HIV. Once they are phosphorylated, they work as antimetabolites by being similar enough to nucleotides to be incorporated into growing DNA strands; but they act as chain terminators and stop viral DNA polymerase. They are not specific to viral DNA and also affect mitochondrial DNA. Because of this they have side effects such as bone marrow suppression.

There is a large family of nucleoside analogue reverse transcriptase inhibitors, because DNA production by reverse transcriptase is very different from normal human DNA replication, so it is possible to design nucleoside analogues that are preferentially incorporated by the former. Some nucleoside analogues, however, can function both as NRTIs and polymerase inhibitors for other viruses (e.g., hepatitis B).

Less selective nucleoside analogues are used as chemotherapy agents to treat cancer, e.g. gemcitabine. They are also used as antiplatelet drugs to prevent the formation of blood clots, ticagrelor and cangrelor.

Resistance

Resistance can develop quickly with as little as one mutation. Mutations occur in the enzymes that phosphorylate the drug and activate it: in the case of herpes simplex, resistance to acyclovir arises due to a mutation affecting the viral enzyme thymidine kinase. Since nucleoside analogues require two phosphorylations to be activated, one carried out by a viral enzyme and the other by enzymes in the host cell, mutations in viral thymidine kinase interfere with the first of these phosphorylations; in such cases the drug remains ineffective. There are, however, several different nucleoside analogue drugs and resistance to one of them is usually overcome by switching to another drug of the same kind (e.g. famciclovir, penciclovir, valaciclovir).

Examples

Nucleoside analogue drugs include:

Related drugs are nucleobase analogs, which don't include a sugar or sugar analog, and nucleotide analogues, which also include phosphate groups.

See also

References

  1. Seley-Radtke, KL; Yates, MK (June 2018). "The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold". Antiviral Research. 154: 66–86. doi:10.1016/j.antiviral.2018.04.004. PMC 6396324. PMID 29649496.
  2. Gizzi AS, Grove TL, Arnold JJ, Jose J, Jangra RK, Garforth SJ, et al. (June 2018). "A naturally occurring antiviral ribonucleotide encoded by the human genome". Nature. 558 (7711). Springer Science and Business Media LLC: 610–614. Bibcode:2018Natur.558..610G. doi:10.1038/s41586-018-0238-4. PMC 6026066. PMID 29925952.
  3. Vedel, M; Lawrence, F; Robert-Gero, M; Lederer, E (14 November 1978). "The antifungal antibiotic sinefungin as a very active inhibitor of methyltransferases and of the transformation of chick embryo fibroblasts by Rous sarcoma virus". Biochemical and Biophysical Research Communications. 85 (1): 371–6. doi:10.1016/s0006-291x(78)80052-7. PMID 217377.
  4. "Herpes Prevention". congresouniversitariomovil.com. Retrieved 14 November 2017.

Further reading

DNA virus antivirals (primarily J05, also S01AD and D06BB)
Baltimore I
Herpesvirus
DNA-synthesis
inhibitor
TK activated
Purine analogue
Pyrimidine analogue
Not TK activated
Other
HPV/MC
Vaccinia
Poxviridae
Hepatitis B (VII)
Multiple/general
Nucleic acid inhibitors
Interferon
Multiple/unknown
Antiviral drugs: antiretroviral drugs used against HIV (primarily J05)
Capsid inhibitors
Entry/fusion inhibitors
(Discovery and development)
Integrase inhibitors
(Integrase strand transfer inhibitors (INSTI))
Maturation inhibitors
Protease Inhibitors (PI)
(Discovery and development)
1 generation
2 generation
Reverse-transcriptase
inhibitors
(RTIs)
Nucleoside and
nucleotide (NRTI)
Non-nucleoside (NNRTI)
(Discovery and development)
1 generation
2 generation
Combined formulations
Pharmacokinetic boosters
Experimental agents
Uncoating inhibitors
Transcription inhibitors
Translation inhibitors
BNAbs
Other
Failed agents
°DHHS recommended initial regimen options. Formerly or rarely used agent.
Categories: