Misplaced Pages

Lead(II) bromide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Lead dibromide)
Lead(II) bromide
Lead(II) bromide
Names
IUPAC name Lead(II) bromide
Other names Lead dibromide
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.065 Edit this at Wikidata
EC Number
  • 233-084-4
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/2BrH.Pb/h2*1H;/q;;+2/p-2Key: ZASWJUOMEGBQCQ-UHFFFAOYSA-L
SMILES
  • BrBr
Properties
Chemical formula PbBr2
Molar mass 367.01 g/mol
Appearance white powder
Density 6.66 g/cm
Melting point 370.6 °C (699.1 °F; 643.8 K)
Boiling point 916 °C (1,681 °F; 1,189 K) (vaporizes)
Solubility in water 0.455 g/100 mL (0 °C)
0.973 g/100 mL (20 °C)
4.41 g/100 mL (100 °C)
Solubility product (Ksp) 1.86 x 10 (20 °C)
Solubility insoluble in alcohol;
soluble in ammonia, alkali, KBr, NaBr
Magnetic susceptibility (χ) −90.6·10 cm/mol
Structure
Crystal structure PbCl2 type (orthorhombic)
Space group Pnma (No. 62)
Lattice constant a = 805.90 pm, b = 954.0 pm, c = 473.19 pm
Formula units (Z) 4
Hazards
GHS labelling:
Pictograms GHS07: Exclamation markGHS08: Health hazardGHS09: Environmental hazard
Signal word Danger
Hazard statements H302, H332, H360, H373, H410
Precautionary statements P201, P202, P260, P261, P264, P270, P271, P273, P281, P301+P312, P304+P312, P304+P340, P308+P313, P312, P314, P330, P391, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3 0 0
Related compounds
Other anions Lead(II) fluoride,
Lead(II) chloride,
Lead(II) iodide
Other cations Thallium(I) bromide,
Tin(II) bromide
Bismuth bromide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Lead(II) bromide is the inorganic compound with the formula PbBr2. It is a white powder. It is produced in the burning of typical leaded gasolines.

Preparation and properties

It is typically prepared from treating solutions of lead salts (e.g., (lead(II) nitrate) with bromide salts. This process exploits its low solubility in water - only 0.455 g dissolves in 100 g of water at 0 °C. It is about ten times more soluble in boiling water.

PbBr2 has the same crystal structure as lead chloride (cotunnite) – they are isomorphous. In this structure, Pb is surrounded by nine Br ions in a distorted tricapped trigonal prismatic geometry. Seven of the Pb-Br distances are shorter, in the range 2.9-3.3 Å, while two of them are longer at 3.9 Å. The coordination is therefore sometimes described as (7+2).

Lead bromide was prevalent in the environment as the result of the use of leaded gasoline. Tetraethyl lead was once widely used to improve the combustion properties of gasoline. To prevent the resulting lead oxides from fouling the engine, gasoline was treated with 1,2-Dibromoethane, which converted lead oxides into the more volatile lead bromide, which was then exhausted from the engine into the environment.

Safety

Like other compounds containing lead, lead(II) bromide is categorized as probably carcinogenic to humans (Category 2A), by the International Agency for Research on Cancer (IARC). Its release into the environment as a product of leaded gasoline was highly controversial.

References

  1. Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, Florida: CRC Press. ISBN 0-8493-0487-3.
  2. NIST-data review 1980
  3. ^ Lumbreras, M.; Protas, J.; Jebbari, S.; Dirksen, G. J.; Schoonman, J. (1986). "Structure and ionic conductivity of mixed lead halides PbCl2xBr2(1−x). II". Solid State Ion. 20 (4): 295–304. doi:10.1016/0167-2738(86)90049-4.
  4. ^ Michael J. Dagani, Henry J. Barda, Theodore J. Benya, David C. Sanders "Bromine Compounds" in Ullmann's Encyclopedia of Industrial Chemistry" Wiley-VCH, Weinheim, 2000.doi:10.1002/14356007.a04_405
  5. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  6. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 382. ISBN 978-0-08-037941-8.
Lead compounds
Pb(II)
Pb(II,IV)
Pb(IV)
Bromine compounds
Br(−I)
Br(−I,I)
Br(I)
Br(II)
Br(I,V)
Br(III)
Br(IV)
Br(V)
Br(VII)
Salts and covalent derivatives of the bromide ion
HBr He
LiBr BeBr2 BBr3
+BO3
CBr4
+C
NBr3
BrN3
NH4Br
NOBr
+N
Br2O
BrO2
Br2O3
Br2O5
BrF
BrF3
BrF5
Ne
NaBr MgBr2 AlBr
AlBr3
SiBr4 PBr3
PBr5
PBr7
+P
S2Br2
SBr2
BrCl Ar
KBr CaBr2
ScBr3 TiBr2
TiBr3
TiBr4
VBr2
VBr3
CrBr2
CrBr3
CrBr4
MnBr2 FeBr2
FeBr3
CoBr2 NiBr2
NiBr4
CuBr
CuBr2
ZnBr2 GaBr3 GeBr2
GeBr4
AsBr3
+As
+AsO3
SeBr2
SeBr4
Br2 Kr
RbBr SrBr2 YBr3 ZrBr2
ZrBr3
ZrBr4
NbBr5 MoBr2
MoBr3
MoBr4
TcBr3
TcBr4
RuBr3 RhBr3 PdBr2 AgBr CdBr2 InBr
InBr3
SnBr2
SnBr4
SbBr3
+Sb
-Sb
Te2Br
TeBr4
+Te
IBr
IBr3
XeBr2
CsBr BaBr2 * LuBr3 HfBr4 TaBr5 WBr5
WBr6
ReBr3 OsBr3
OsBr4
IrBr3
IrBr
4
PtBr2
PtBr4
AuBr
AuBr3
Hg2Br2
HgBr2
TlBr PbBr2 BiBr3 PoBr2
PoBr4
AtBr Rn
FrBr RaBr2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaBr3 CeBr3 PrBr3 NdBr2
NdBr3
PmBr3 SmBr2
SmBr3
EuBr2
EuBr3
GdBr3 TbBr3 DyBr3 HoBr3 ErBr3 TmBr2
TmBr3
YbBr2
YbBr3
** AcBr3 ThBr4 PaBr4
PaBr5
UBr4
UBr5
NpBr3
NpBr4
PuBr3 AmBr2
AmBr3
CmBr3 BkBr3 CfBr3 EsBr2
EsBr3
Fm Md No
Categories: