Misplaced Pages

Carbide bromide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Carbide bromides) Class of chemical compounds

Carbide bromides are mixed anion compounds containing bromide and carbide anions. Many carbide bromides are cluster compounds, containing on, two or more carbon atoms in a core, surrounded by a layer of metal atoms, encased in a shell of bromide ions. These ions may be shared between clusters to form chains, double chains or layers.

The great majority of these carbide bromide compounds contain rare earth elements. Since these elements have similar properties, similar structures can be made by substituting the elements. R2CBr2 forms a structure with layers of R6C clusters that contain one carbon atom. Each layer has bromide coating the top and bottom. Very similar is R2CBr2 which has layers of R6C2 clusters containing pairs of carbon atoms. This dicarbon is an ethenide (C2), and contains a double bond. Layers have bromide on both sides, and so they are only weakly held together by van der Waals forces. If these layers are aligned with each other a 1T- form results with a small c measurement on the unit cell. In some compounds the layers are not quite aligned, but repeat after three layers giving a 3R form, with a larger c unit cell height. Where the layers align, the crystal system is trigonal. But if the layers never quite align at any height, a monoclinic crystal results. The C2 unit sits at an angle to the layers, and thus reduces symmetry compared to compounds with single carbon atoms in the cluster.

In R2CBr there are layers of R6C that share bromide between layers.

List

formula system space group unit cell volume density comment reference
Sc7CBr12 trigonal R3 a=13.628, c=9.203 4.33
Y2CBr2 trigonal R3m a=3.7545, c=29.125 4.90 bronze
Y2C2Br2 monoclinic C12/m1 a=6.953, b=3.764, c=9.938, β=99.98 3.85 superconductor Tc=5.04K
Y2C0.7Br2 trigonal P3m1 a=3.73 c=9.864 4.83 grey
Y10Br18(C2)2 monoclinic P21/n a=9.729 b=16.323 c=13.229 β =121.131° Z=24 1798.3 black
Na0.23Y2C2Br2 monoclinic C2/m a=7.061, b=3.724, c=10.464, β=92.96 4.43 copper red
Zr6CBr14 orthorhombic Cmce a=14.69 b=13.229 c=11.991
NaZr6CBr14 orthorhombic Cmca a=14.6876, b=13.2266, c=11.9864
K4Zr6Br18C triclinic P1 a=10.114, b=10.283, c=10.374, α=118.54, β=99.98, γ=104.08, Z=1
RbZr6CBr14 orthorhombic Cmca a=14.719, b=13.287, c=12.043
Cs2Zr6Br10C trigonal R3c a=13.0862 c=35.823 Z=6 5312.8
CsZr6Br9C trigonal R3c a=13.1031 c=35.800 Z=6 5321.5
Cs3Zr6Br15C trigonal R3c a=13.116 c=35.980 Z=6
Cs4Zr6Br15C trigonal R3c a=13.098 c=35.756 Z=6 5312
La2C2Br monoclinic C12/c1 a=15.313, b=4.193, c=6.842, β=100.53,90 5.87
La3CBr5 monoclinic C12/c1 a=14.234, b=10.858, c=14.588, β =106.8 5.10 yellow
La3C2Br3 orthorhombic C2221 a=11.533, b=17.0698, c=17.054 5.38 bronze
La4C2Br5 orthorhombic Immm a = 3.9950, b = 8.277, c = 18.101 5.43 black
La5C2Br9 orthorhombic Pnma a=11.309, b=9.9477, c=16.4911 5.15 red
La5C6Br3 monoclinic C12/m1 a=22.809, b=3.9855, c=16.599, β=123.32 5.30 bronze
La6C2Br9 monoclinic C2/c a=14,234 b=10.858 c=14.588 β=106.80 Z=4 2158.4 4.85 yellow insulator
La10(C2)6Br6 monoclinic C2/m a = 22.809, b = 3.9855, c = 16.599, β = 123.32° Z=2 1260.9 5.301 bronze; air sensitive
La3Br2C2B Pnma f =15.323, b = 3.973, c =11.567 black
Ce2C2Br monoclinic C2/c a = 15.120, b = 4.179, c = 6.743, β = 101.09 °
Ce4CBr5 monoclinic C2/m a = 18.306, b = 3.9735, c = 8.378, β=104.91°
Ce4C1.5Br5 monoclinic C2/m a = 18.996, b = 3.9310, c = 8.282, β = 106.74°
Ce4C2Br5 orthorhombic Immm a = 3.9835, b = 8.186, c = 18.017 5.54 violet
Ce4Br3C4 triclinic P 1 a = 4.227, b = 11.034, c = 11.268, α = 77.15°, β = 90.13° and γ = 84.42°
Ce10(C2)6Br6 monoclinic C2/m a = 22.483, b = 3.9253, c = 16.375, β = 123.15° Z=2 1209.9 5.558 bronze; air sensitive
Ce6Br3C3B2 monoclinic P21/m a = 8.602, b = 3.829, c = 10.220, β = 112.53 black
Pr2CBr hexagonal P63/mmc a=3.8071, c=14.7787 6.69 black
Pr2C2Br monoclinic C12/c1 a=15.054, b=4.139, c=6.713, β=101.08 6.24
Pr3CBr3 cubic I4131 a=11.61 5.73
Pr3CBr5 triclinic P1 a=7.571, b=9.004, c=9.062, α=108.57, β=97.77, γ=106.28 5.09 black
Pr4C1.3Br5 monoclinic C2/m a = 18.467, b = 3.911, c = 8.258, β = 105.25°
Pr4C1.5Br5 monoclinic C2/m a = 19.044, b = 3.9368, c = 8.254, β = 106.48°
Pr5C2Br8 triclinic P1 a=9.096, b=12.185, c=16.688, α=79.57, β=89.86, γ=84.38 5.02 black
Pr5C2Br9 monoclinic P21/n a = 10.069; b = 18.861; c = 10.459; β = 108.130° Z = 4 5.09 dark red
Pr5C6Br3 monoclinic C12/m1 a=22.36, b=3.895, c=16.269, β=90,123.44 5,71
Pr6C2Br10 triclinic P1 a=7.571 b=9.004 c=9.062 α=108.57° β=97.77° γ=106.28° Z=1 544.8 5.09 black
Pr7C3Br10 a=9.054, b=11.1265, c=13.352, α=79.641, β=72.57, γ=64.67 5.22 black
Pr10C4Br15 triclinic P1 a=9.098 b=10.127 c=10.965 α=70.38° β=66.31° γ=70.84° Z=1 849.3 5.19 silver
Pr10(C2)2Br16 triclinic P1 a = 9.096, b = 12.185, c = 16.688, α = 79.57°, β = 89.86°, γ = 84.38° metallic black
Pr10(C2)6Br6 monoclinic C2/m a = 22.36, b = 3.895, c = 16.269, β = 123.44° Z=2 bronze; air sensitive
Pr14C6Br20 triclinic P1 a=9.098 b=10.935 c=13.352 α=86.27° β=75.57° γ=66.88° Z=1 1157.8 5.23 black
Pr6C2Cl5Br5 monoclinic C2/c a = 13.689(1) Å, b = 10.383(1) Å, c = 14.089(1) Å, β = 106.49(1)° yellow to green
Gd2CBr hexagonal P63/mmc a=3.7858, c=14.209 7.65 dark grey
Gd2Br2C trigonal P3m1 a=3.8209, c=9.824 black
3s-Gd2C2Br2 monoclinic C2/m a = 7.066, b = 3.827, c = 9.967, β = 99.95° 5.69 black; contains C2
Gd2C2Br2 monoclinic C2/m a=7.025, b=3.8361, c=9.868, β =94.47 6.24 gold
Gd4C2Br3 orthorhombic Pnma a = 10.844, b = 3.730, c = 20.361 6.58 bronze
Gd10C4Br18 monoclinic P21/n a=9.7406 b=16.4817 c=11.8604 β =104.394° Z=24 contains C2
Gd10(C2)6Br6 monoclinic C2/m a = 21.507, b = 3.7193, c = 15.331, β = 123.34° Z=2 1024.5 6.254 bronze; air sensitive
Gd4Br3C2B monoclinic P21/m a=9.547, b=3.693, c=12.44,5, β=106.68 black
K2Br19 orthorhombic Pbcn a=12.751, b=23.17, c=14.423 5.01 black
K2Br20 orthorhombic Pbca a=1.2751, b=2.317, c=1.4423 4.70 black
Rb2Br19 orthorhombic Pbcn a=1.2737, b=2.325, c=1.4412 5.15 black
Cs2Br19 orthorhombic
TbCBr monolinic C12/m1 a=7.015, b=3.801, c=9.948, β=100.05 6.28
Tb2CBr hexagonal P63/mmc a=3.6915, c=14.043 8.21
Tb2CBrH hexagonal P63mc a=3.7376, c=14.315 7.88
Tb4C2Br3 orthorhombic Pnma a = 10.743, b = 3.706, c = 20.194 7.31 bronze
Tb10Br18(C2)2 monolinic P121/c1 a=9.7562 b=16.4254 c=13.3043 β =120.675° 1833.7 5.57 dark red
Rb2Br19 orthorhombic a=1.2664, b=2.3105, c=1.4303 black
Dy10Br18(C2)2 monolinic P21/c a = 9.740 b = 16.340 c = 13.247 β = 120.869° Z = 2 1809.6 black
Ho10Br18(C2)2 monolinic P21/n a=9.6838 b=16.2436 c=11.6374 β =104.427° Z=24 1772.8
Br18 monoclinic P21/n a = 9.718, b = 16.234, c = 11.638, β = 104.00°; Z = 2 5.89 black
Lu2CBr2 trigonal R3m a= 3.6663, c=28.799 7.75 gold
La0.9Lu0.1CBr monoclinic C2/m a=7.434, b=4.0568, c=10.046, β=93.7 5.15
W30C2(Cl,Br)68 triclinic P1 a = 12.003, b = 14.862, c = 15.792, α = 88.75°, β = 68.85°, γ = 71.19° Z=1 2472.9 6.35 black
Th6CBr15 orthorhombic Cmce a=15.764, b=14.16, c=13.124 5.72 green
Y0.8Th0.2CBr monoclinic C2/m a=7.061, b=3.776, c=9.983, β=100.36 5.31

References

  1. ^ Handbook on the physics and chemistry of rare earths. Amsterdam: North-Holland. 1978. pp. 221–225. ISBN 9780444889669.
  2. ^ Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 341. ISBN 978-3-11-031174-7.
  3. Henn, R. W.; Schnelle, W.; Kremer, R. K.; Simon, A. (1996-07-08). "Bulk Superconductivity at 10 K in the Layered Compounds Y 2 C 2 I 2 and Y 2 C 2 Br 2". Physical Review Letters. 77 (2): 374–377. Bibcode:1996PhRvL..77..374H. doi:10.1103/PhysRevLett.77.374. ISSN 0031-9007. PMID 10062435.
  4. ^ Cruz, Escobedo (2016-06-13). Compounds Comprising Lanthanide Clusters and Their Potential as Molecular Magnets: Synthesis, Structure and Magnetic Properties (Thesis thesis).
  5. ^ Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 924. ISBN 978-3-11-031174-7.
  6. Qi, Ru-Yi; Corbett, John D (August 1998). "Comparative Zirconium Bromide Cluster Chemistry. A New Structure in K4Zr6Br18C". Journal of Solid State Chemistry. 139 (1): 85–92. Bibcode:1998JSSCh.139...85Q. doi:10.1006/jssc.1998.7814.
  7. ^ Qi, Ru-Yi; Corbett, John D. (March 1995). "Cs3Zr6Br15Z (Z = C, B): A Stuffed Rhombohedral Perovskite Structure of Linked Clusters". Inorganic Chemistry. 34 (7): 1657–1662. doi:10.1021/ic00111a009. ISSN 0020-1669.
  8. ^ Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 340. ISBN 978-3-11-031174-7.
  9. ^ Mattausch, Hansjürgen; Schaloske, Manuel C.; Hoch, Constantin; Simon, Arndt (March 2008). "Halogenide der Seltenerdmetalle Ln4X5Z. Teil 2: Eine orthorhombische Verknüpfungsvarianteo-Ln4X5Z". Zeitschrift für anorganische und allgemeine Chemie. 634 (3): 498–502. doi:10.1002/zaac.200700478.
  10. Mattausch, Hansjürgen; Hoch, Constantin; Simon, Arndt (2007-02-01). "La 6 C 2 Br 9 : La-Tetraederdoppel mit endohedralen C 4– -Ionen / La 6 C 2 Br 9 : La Bitetrahedral Clusters with Endohedral C 4− Ions". Zeitschrift für Naturforschung B. 62 (2): 143–147. doi:10.1515/znb-2007-0201. ISSN 1865-7117. S2CID 98503059.
  11. ^ Mattausch, Hansjürgen; Kienle, Lorenz; Duppel, Viola; Hoch, Constantin; Simon, Arndt (September 2009). "Seltenerdethenidhalogenide Ln 2 n +6(C 2 ) n +4 X 2 n +2: Darstellung, Struktur, Verwachsung und Verzwilligung". Zeitschrift für anorganische und allgemeine Chemie. 635 (11): 1527–1535. doi:10.1002/zaac.200900289.
  12. ^ Mattausch, Hansjürgen; Simon, Arndt (1995-08-18). "Bromides of Rare Earth Metal Boride Carbides—A System of Building Blocks". Angewandte Chemie International Edition in English. 34 (15): 1633–1635. doi:10.1002/anie.199516331. ISSN 0570-0833.
  13. Mattausch, Hansjürgen; Simon, Arndt (July 2011). "Variationen modulo 4-4+, 4+3-3+4-, 4-5+, 5-4+4-5+4-4+ bei Seltenerdcarbidhalogeniden". Zeitschrift für anorganische und allgemeine Chemie. 637 (9): 1093–1100. doi:10.1002/zaac.201100055.
  14. ^ Mattausch, Hansjürgen; Schaloske, Manuel C.; Hoch, Constantin; Zheng, Chong; Simon, Arndt (March 2008). "Seltenerdhalogenide Ln4X5Z. Teil 1: C und/oder C2 in Ln4X5Z". Zeitschrift für anorganische und allgemeine Chemie (in German). 634 (3): 491–497. doi:10.1002/zaac.200700500.
  15. Mattausch, Hansjürgen; Oeckler, Oliver; Kremer, Reinhard K.; Simon, Arndt (2000). "Struktur, Verzwillingung und Eigenschaften von Ce4Br3C4". Zeitschrift für Anorganische und Allgemeine Chemie. 626 (2): 518–523. doi:10.1002/(SICI)1521-3749(200002)626:2<518::AID-ZAAC518>3.0.CO;2-2.
  16. ^ Schaloske, Manuel Christian; Mattausch, Hansjürgen; Duppel, Viola; Kienle, Lorenz; Simon, Arndt (2009-08-01). "The Starting Members of the Series Pr 4n+2 (C 2 ) n Br 5n+5 (n = 1, 2, 3)". Zeitschrift für Naturforschung B. 64 (8): 922–928. doi:10.1515/znb-2009-0808. ISSN 1865-7117. S2CID 197260171.
  17. Schaloske, Manuel Christian; Mattausch, Hansjürgen; Kienle, Lorenz; Simon, Arndt (October 2008). "Pr 10 (C 2 ) 2 Br 16 : Eine neue Struktur mit diskreten Pr 10 -Doppeloktaedern". Zeitschrift für anorganische und allgemeine Chemie. 634 (12–13): 2246–2254. doi:10.1002/zaac.200800204.
  18. Schaloske, Manuel C.; Mattausch, Hansjürgen; Kienle, Lorenz; Simon, Arndt (August 2008). "Pr6C2-Doppeltetraeder in Pr6C2Cl10 und Pr6C2Cl5Br5". Zeitschrift für anorganische und allgemeine Chemie. 634 (9): 1493–1500. doi:10.1002/zaac.200800026.
  19. Simon, Arndt (March 1985). "Empty, filled, and condensed metal clusters". Journal of Solid State Chemistry. 57 (1): 2–16. Bibcode:1985JSSCh..57....2S. doi:10.1016/S0022-4596(85)80055-4.
  20. Miller, Gordon J.; Burdett, Jeremy K.; Schwarz, Christine; Simon, Arndt (November 1986). "Molecular interstitials: an analysis of the gadolinium carbide chloride, Gd2C2Cl2". Inorganic Chemistry. 25 (24): 4437–4444. doi:10.1021/ic00244a031. ISSN 0020-1669.
  21. Villars, Pierre; Cenzual, Karin; Gladyshevskii, Roman (2014-12-17). Handbook of Inorganic Substances 2015. Walter de Gruyter GmbH & Co KG. p. 353. ISBN 978-3-11-031174-7.
  22. Mattausch, Hj.; Kremer, R. K.; Eger, R.; Simon, A. (March 1992). "3s-Gd2C2Br2: Eine neue Stapelvariante". Zeitschrift für anorganische und allgemeine Chemie (in German). 609 (3): 7–11. doi:10.1002/zaac.19926090302. ISSN 0044-2313.
  23. ^ Bauhofer, Christine; Mattausch, Hansjürgen; Kremer, Reinhard K.; Simon, Arndt (September 1995). "Die Gadoliniumcarbidhalogenide Gd4C2X3 (X = Cl, Br)". Zeitschrift für anorganische und allgemeine Chemie (in German). 621 (9): 1501–1507. doi:10.1002/zaac.19956210911. ISSN 0044-2313.
  24. ^ Ließ, Henning; Steffen, Frank; Meyer, Gerd (January 1997). "Quaternary chlorides and bromides with interstitially stabilized double octahedra, A2[Gd10(C2)2]Cl19 (A = Rb, Cs), A2[Gd10(C2)2]Br19 (A = K,Rb), Rb2[Tb10(C2)2]Br19, and K2[Gd10(C2)2]Br20". Journal of Alloys and Compounds. 246 (1–2): 242–247. doi:10.1016/S0925-8388(96)02476-0.
  25. Daub, Kathrin; Meyer, Gerd (2008-01-15). "Octadecabromidobis(dicarbido)decadysprosium, [Dy 10 Br 18 (C 2 ) 2 ]". Acta Crystallographica E. 64 (1): i4. doi:10.1107/S1600536807066111. ISSN 1600-5368. PMC 2914882. PMID 21200454.
  26. Uhrlandt, Stefan; Meyer, Gerd; Artelt, Holger M. (September 1994). "Cs[Er10(C2)2]I18 und [Er10(C2)2]Br18: zwei neue Beispiele für "reduzierte" Halogenide der Lanthanide mit isolierten [M10(C2)2]-Clustern". Zeitschrift für anorganische und allgemeine Chemie (in German). 620 (9): 1532–1536. doi:10.1002/zaac.19946200907. ISSN 0044-2313.
  27. Ströbele, Markus; Meyer, H.-Jürgen (2010-07-05). "The Trigonal Prismatic Cluster Compound W 6 CCl 15 and a Carambolage of Tungsten Clusters in the Structure of the Heteroleptic Cluster Compound W 30 C 2 (Cl,Br) 68". Inorganic Chemistry. 49 (13): 5986–5991. doi:10.1021/ic100516t. ISSN 0020-1669. PMID 20521794.
  28. Simon, Arndt; Böttcher, Fred; Cockcroft, Jeremy Karl (January 1991). "Th6Br15H7—Stabilization of a Th6Br12 Cluster by Seven Hydrogen Atoms". Angewandte Chemie International Edition in English. 30 (1): 101–102. doi:10.1002/anie.199101011. ISSN 0570-0833.
Salts and covalent derivatives of the bromide ion
HBr He
LiBr BeBr2 BBr3
+BO3
CBr4
+C
NBr3
BrN3
NH4Br
NOBr
+N
Br2O
BrO2
Br2O3
Br2O5
BrF
BrF3
BrF5
Ne
NaBr MgBr2 AlBr
AlBr3
SiBr4 PBr3
PBr5
PBr7
+P
S2Br2
SBr2
BrCl Ar
KBr CaBr2
ScBr3 TiBr2
TiBr3
TiBr4
VBr2
VBr3
CrBr2
CrBr3
CrBr4
MnBr2 FeBr2
FeBr3
CoBr2 NiBr2
NiBr4
CuBr
CuBr2
ZnBr2 GaBr3 GeBr2
GeBr4
AsBr3
+As
+AsO3
SeBr2
SeBr4
Br2 Kr
RbBr SrBr2 YBr3 ZrBr2
ZrBr3
ZrBr4
NbBr5 MoBr2
MoBr3
MoBr4
TcBr3
TcBr4
RuBr3 RhBr3 PdBr2 AgBr CdBr2 InBr
InBr3
SnBr2
SnBr4
SbBr3
+Sb
-Sb
Te2Br
TeBr4
+Te
IBr
IBr3
XeBr2
CsBr BaBr2 * LuBr3 HfBr4 TaBr5 WBr5
WBr6
ReBr3 OsBr3
OsBr4
IrBr3
IrBr
4
PtBr2
PtBr4
AuBr
AuBr3
Hg2Br2
HgBr2
TlBr PbBr2 BiBr3 PoBr2
PoBr4
AtBr Rn
FrBr RaBr2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaBr3 CeBr3 PrBr3 NdBr2
NdBr3
PmBr3 SmBr2
SmBr3
EuBr2
EuBr3
GdBr3 TbBr3 DyBr3 HoBr3 ErBr3 TmBr2
TmBr3
YbBr2
YbBr3
** AcBr3 ThBr4 PaBr4
PaBr5
UBr4
UBr5
NpBr3
NpBr4
PuBr3 AmBr2
AmBr3
CmBr3 BkBr3 CfBr3 EsBr2
EsBr3
Fm Md No
Salts and covalent derivatives of the carbide ion
CH4
+H
He
Li4C
Li2C2
Be2C B4C
BnCm
+B
C
C2
C
CN
(CN)2
+N
CO
CO2
C3O2
CF
CF4
Ne
Na2C2 Mg2C Al4C3 SiC
+Si
+P CS2
+S
CCl4
+Cl
Ar
K2C2 CaC
CaC2
ScC
Sc3C4
Sc4C3
Sc15C19
TiC VC Cr3C2 MnC2 Fe2C
Fe3C
Fe5C2
CoC Ni2C CuC
CuC2
Zn2C Ga +Ge +As CSe2 CBr4
+Br
Kr
Rb2C2 SrC2 YC ZrC NbC MoC
Mo2C
Tc Ru2C Rh2C PdC2 Ag2C2 CdC InC Sn Sb Te CI4
+I
Xe
Cs2C2 BaC2 * LuC2 HfC TaC
TaC5
WC Re2C Os2C Ir2C PtC Au2C2 Hg2C2 TlC ?PbC Bi Po At Rn
Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaC2 CeC2 PrC2 NdC2 PmC2 SmC2 EuC2 GdC2 TbC2 DyC2 HoC2 ErC2 TmC2 YbC2
** Ac ThC
ThC2
PaC UC NpC PuC
Pu2C3
Am Cm Bk Cf Es Fm Md No
Categories: