Infinite-order triangular tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | 3 |
Schläfli symbol | {3,∞} |
Wythoff symbol | ∞ | 3 2 |
Coxeter diagram | |
Symmetry group | , (*∞32) |
Dual | Order-3 apeirogonal tiling |
Properties | Vertex-transitive, edge-transitive, face-transitive |
In geometry, the infinite-order triangular tiling is a regular tiling of the hyperbolic plane with a Schläfli symbol of {3,∞}. All vertices are ideal, located at "infinity" and seen on the boundary of the Poincaré hyperbolic disk projection.
Symmetry
A lower symmetry form has alternating colors, and represented by cyclic symbol {(3,∞,3)}, . The tiling also represents the fundamental domains of the *∞∞∞ symmetry, which can be seen with 3 colors of lines representing 3 mirrors of the construction.
Alternated colored tiling |
*∞∞∞ symmetry |
Apollonian gasket with *∞∞∞ symmetry |
Related polyhedra and tiling
This tiling is topologically related as part of a sequence of regular polyhedra with Schläfli symbol {3,p}.
*n32 symmetry mutation of regular tilings: {3,n} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Spherical | Euclid. | Compact hyper. | Paraco. | Noncompact hyperbolic | |||||||
3.3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Paracompact uniform tilings in family | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Symmetry: , (*∞32) | (∞32) |
(*∞33) |
(3*∞) | |||||||
= |
= |
= |
= or |
= or |
= | |||||
{∞,3} | t{∞,3} | r{∞,3} | t{3,∞} | {3,∞} | rr{∞,3} | tr{∞,3} | sr{∞,3} | h{∞,3} | h2{∞,3} | s{3,∞} |
Uniform duals | ||||||||||
V∞ | V3.∞.∞ | V(3.∞) | V6.6.∞ | V3 | V4.3.4.∞ | V4.6.∞ | V3.3.3.3.∞ | V(3.∞) | V3.3.3.3.3.∞ |
Paracompact hyperbolic uniform tilings in family | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: , (*∞33) | , (∞33) | ||||||||||
(∞,∞,3) | t0,1(∞,3,3) | t1(∞,3,3) | t1,2(∞,3,3) | t2(∞,3,3) | t0,2(∞,3,3) | t0,1,2(∞,3,3) | s(∞,3,3) | ||||
Dual tilings | |||||||||||
V(3.∞) | V3.∞.3.∞ | V(3.∞) | V3.6.∞.6 | V(3.3) | V3.6.∞.6 | V6.6.∞ | V3.3.3.3.3.∞ |
Other infinite-order triangular tilings
A nonregular infinite-order triangular tiling can be generated by a recursive process from a central triangle as shown here:
See also
- Infinite-order tetrahedral honeycomb
- List of regular polytopes
- List of uniform planar tilings
- Tilings of regular polygons
- Triangular tiling
- Uniform tilings in hyperbolic plane
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
- Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
- Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
Tessellation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||
| |||||||||||||
| |||||||||||||
|