Misplaced Pages

Uranium hexafluoride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Uranium(VI) fluoride)
Uranium hexafluoride
Names
IUPAC names Uranium hexafluoride
Uranium(VI) fluoride
Identifiers
CAS Number
3D model (JSmol)
Abbreviations hex
ChEBI
ChemSpider
ECHA InfoCard 100.029.116 Edit this at Wikidata
EC Number
  • 232-028-6
Gmelin Reference 2923
PubChem CID
RTECS number
  • YR4720000
UNII
UN number 2978 (<1% U)
2977 (>1% U)
CompTox Dashboard (EPA)
InChI
  • InChI=1S/6FH.U/h6*1H;/q;;;;;;+6/p-6Key: SANRKQGLYCLAFE-UHFFFAOYSA-H
  • InChI=1/6FH.U/h6*1H;/q;;;;;;+6/p-6/rF6U/c1-7(2,3,4,5)6Key: SANRKQGLYCLAFE-IIYYNVFAAT
SMILES
  • F(F)(F)(F)(F)F
Properties
Chemical formula UF6
Molar mass 352.02 g/mol
Appearance Colorless solid
Density 5.09 g/cm, solid
Boiling point 56.5 °C (133.7 °F; 329.6 K) (sublimes, at atmospheric pressure)
Solubility in water Hydrolyzes
Solubility
Structure
Crystal structure Orthorhombic, oP28
Space group Pnma, No. 62
Coordination geometry Octahedral (Oh)
Dipole moment 0
Thermochemistry
Std molar
entropy
(S298)
  • Solid, 227.8±1.3 J·K·mol
  • Gaseous, 377.8±1.3 J·K·mol
Std enthalpy of
formation
fH298)
  • Solid, −2197.7±1.8 kJ·mol
  • Gaseous, −2148.1±1.8 kJ·mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Toxic, corrosive, radioactive
GHS labelling:
Pictograms GHS06: ToxicGHS08: Health hazardGHS09: Environmental hazard
Signal word Danger
Hazard statements H300, H330, H373, H411
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazard W+OX: Reacts with water in an unusual or dangerous manner AND is oxidizer
4 0 2W
OX
Flash point Non-flammable
Safety data sheet (SDS) ICSC 1250
Related compounds
Other anions Uranium hexachloride
Other cations
Related uranium fluorides
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Uranium hexafluoride, sometimes called hex, is an inorganic compound with the formula UF6. Uranium hexafluoride is a volatile, toxic white solid that is used in the process of enriching uranium, which produces fuel for nuclear reactors and nuclear weapons.

Preparation

Uranium dioxide is converted with hydrofluoric acid (HF) to uranium tetrafluoride:

UO2 + 4 HF → UF4 + 2 H2O

In samples contaminated with uranium trioxide, the oxyfluoride is produced in the HF step:

UO3 + HF → UF2O2 + H2O

The resulting UF4 is subsequently oxidized with fluorine to give the hexafluoride:

UF4 + F2 → UF6

Properties

Physical properties

At atmospheric pressure, UF6 sublimes at 56.5 °C.

UF6 in a glass ampoule

The solid-state structure was determined by neutron diffraction at 77 K and 293 K.

  • Ball-and-stick model of the unit cell of uranium hexafluoride Ball-and-stick model of the unit cell of uranium hexafluoride
  • Bond lengths and angles of gaseous uranium hexafluoride Bond lengths and angles of gaseous uranium hexafluoride

Chemical properties

UF6 reacts with water, releasing hydrofluoric acid. The compound reacts with aluminium, forming a surface layer of AlF3 that resists any further reaction from the compound.

Uranium hexafluoride is a mild oxidant. It is a Lewis acid as evidenced by its binding to form heptafluorouranate(VI), [UF7].

Polymeric uranium(VI) fluorides containing organic cations have been isolated and characterized by X-ray diffraction.

Application in the fuel cycle

Phase diagram of UF6

As one of the most volatile compounds of uranium, uranium hexafluoride is relatively convenient to process and is used in both of the main uranium enrichment methods, namely gaseous diffusion and the gas centrifuge method. Since the triple point of UF6; 64 °C(147 °F; 337 K) and 152 kPa (22 psi; 1.5 atm); is close to ambient conditions, phase transitions can be achieved with little thermodynamic work.

Fluorine has only a single naturally occurring stable isotope, so isotopologues of UF6 differ in their molecular weight based solely on the uranium isotope present. This difference is the basis for the physical separation of isotopes in enrichment.

All the other uranium fluorides are nonvolatile solids that are coordination polymers.

The conversion factor for the U isotopologue of UF6 ("hex") to "U mass" is 0.676.

Gaseous diffusion requires about 60 times as much energy as the gas centrifuge process: gaseous diffusion-produced nuclear fuel produces 25 times more energy than is used in the diffusion process, while centrifuge-produced fuel produces 1,500 times more energy than is used in the centrifuge process.

In addition to its use in enrichment, uranium hexafluoride has been used in an advanced reprocessing method (fluoride volatility), which was developed in the Czech Republic. In this process, spent nuclear fuel is treated with fluorine gas to transform the oxides or elemental metals into a mixture of fluorides. This mixture is then distilled to separate the different classes of material. Some fission products form nonvolatile fluorides which remain as solids and can then either be prepared for storage as nuclear waste or further processed either by solvation-based methods or electrochemically.

Uranium enrichment produces large quantities of depleted uranium hexafluoride (DUF6 or D-UF6) as a waste product. The long-term storage of D-UF6 presents environmental, health, and safety risks because of its chemical instability. When UF6 is exposed to moist air, it reacts with the water in the air to produce UO2F2 (uranyl fluoride) and HF (hydrogen fluoride) both of which are highly corrosive and toxic. In 2005, 686,500 tonnes of D-UF6 was housed in 57,122 storage cylinders located near Portsmouth, Ohio; Oak Ridge, Tennessee; and Paducah, Kentucky. Storage cylinders must be regularly inspected for signs of corrosion and leaks. The estimated lifetime of the steel cylinders is measured in decades.

Accidents and disposal

There have been several accidents involving uranium hexafluoride in the US, including a cylinder-filling accident and material release at the Sequoyah Fuels Corporation in 1986 where an estimated 29 500 pounds of gaseous UF6 escaped. The U.S. government has been converting DUF6 to solid uranium oxides for disposal. Such disposal of the entire DUF6 stockpile could cost anywhere from $15 million to $450 million.

  • Ruptured 14-ton UF6 shipping cylinder. 1 fatality, dozens injured. ~29500 lbs of material released. Sequoyah Fuels Corporation 1986. Ruptured 14-ton UF6 shipping cylinder. 1 fatality, dozens injured. ~29500 lbs of material released. Sequoyah Fuels Corporation 1986.
  • DUF6 storage yard from afar DUF6 storage yard from afar
  • DUF6 cylinders: painted (left) and corroded (right) DUF6 cylinders: painted (left) and corroded (right)

References

  1. "Uranium Hexafluoride". Archived from the original on 2013-09-16. Retrieved 2013-08-08.
  2. ^ Johnson, Gerald K. (1979). "The Enthalpy of Formation of Uranium Hexafluoride". The Journal of Chemical Thermodynamics. 11 (5): 483–490. doi:10.1016/0021-9614(79)90126-5.
  3. Uranium(VI) fluoride
  4. ^ Peehs, Martin; Walter, Thomas; Walter, Sabine; Zemek, Martin (2007). "Uranium, Uranium Alloys, and Uranium Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a27_281.pub2. ISBN 978-3-527-30385-4.
  5. Brickwedde, Ferdinand G.; Hoge, Harold J.; Scott, Russell B. (1948). "The Low Temperature Heat Capacities, Enthalpies, and Entropies of UF4 and UF6". J. Chem. Phys. 16 (5): 429–436. Bibcode:1948JChPh..16..429B. doi:10.1063/1.1746914.
  6. J. H. Levy; John C. Taylor; Paul W. Wilson (1976). "Structure of Fluorides. Part XII. Single-Crystal Neutron Diffraction Study of Uranium Hexafluoride at 293 K". J. Chem. Soc., Dalton Trans. (3): 219–224. doi:10.1039/DT9760000219.
  7. J. H. Levy, J. C. Taylor and A. B. Waugh (1983). "Neutron Powder Structural Studies of UF6, MoF6 and WF6 at 77 K". Journal of Fluorine Chemistry. 23: 29–36. doi:10.1016/S0022-1139(00)81276-2.
  8. J. C. Taylor, P. W. Wilson, J. W. Kelly: „The structures of fluorides. I. Deviations from ideal symmetry in the structure of crystalline UF6: a neutron diffraction analysis", Acta Crystallogr., 1973, B29, p. 7–12; doi:10.1107/S0567740873001895.
  9. Kimura, Masao; Schomaker, Werner; Smith, Darwin W.; Bernard (1968). "Electron-Diffraction Investigation of the Hexafluorides of Tungsten, Osmium, Iridium, Uranium, Neptunium, and Plutonium". J. Chem. Phys. 48 (8): 4001–4012. Bibcode:1968JChPh..48.4001K. doi:10.1063/1.1669727. Archived from the original on 2023-01-11. Retrieved 2020-10-10.
  10. G. H. Olah; J. Welch (1978). "Synthetic methods and reactions. 46. Oxidation of organic compounds with uranium hexafluoride in haloalkane solutions". J. Am. Chem. Soc. 100 (17): 5396–5402. doi:10.1021/ja00485a024.
  11. J. A. Berry; R. T. Poole; A. Prescott; D. W. A. Sharp; J. M. Winfield (1976). "The oxidising and fluoride ion acceptor properties of uranium hexafluoride in acetonitrile". J. Chem. Soc., Dalton Trans. (3): 272–274. doi:10.1039/DT9760000272.
  12. S. M. Walker; P. S. Halasyamani; S. Allen; D. O'Hare (1999). "From Molecules to Frameworks: Variable Dimensionality in the UO2(CH3COO)2·2H2O/HF(aq)/Piperazine System. Syntheses, Structures, and Characterization of Zero-Dimensional (C4N2H12)UO2F4·3H2O, One-Dimensional (C4N2H12)2U2F12·H2O, Two-Dimensional (C4N2H12)2(U2O4F5)4·11H2O, and Three-Dimensional (C4N2H12)U2O4F6". J. Am. Chem. Soc. 121 (45): 10513–10521. doi:10.1021/ja992145f.
  13. "Uranium Hexafluoride: Source: Appendix A of the PEIS (DOE/EIS-0269): Physical Properties". web.evs.anl.gov. Retrieved 2022-08-18.
  14. "Uranium Enrichment and the Gaseous Diffusion Process". USEC Inc. Archived from the original on 2007-10-19. Retrieved 2007-09-24.
  15. "Unit converter molar mass calculator". TranslatorsCafé. Mississauga, Ontario, Canada: ANVICA Software Development. 1 February 2021.
  16. "How much depleted uranium hexafluoride is stored in the United States?". Depleted UF6 FAQs. Argonne National Laboratory.
  17. "Depleted UF6 Management Program Documents". Archived from the original on 2008-02-16. Retrieved 2006-05-17.
  18. "What is DUF6? Is it dangerous and what should we do with it?". Institute for Energy and Environmental Research. 2007-09-24.
  19. Brugge, D.; Delemos, J. L.; Bui, C. (2007). "The Sequoyah Corporation Fuels Release and the Church Rock Spill: Unpublicized Nuclear Releases in American Indian Communities". American Journal of Public Health. 97 (9): 1595–1600. doi:10.2105/AJPH.2006.103044. PMC 1963288. PMID 17666688.
  20. "Have there been accidents involving uranium hexafluoride?". Depleted UF6 FAQs. Argonne National Laboratory. Archived from the original on 2017-06-09.
  21. "What is going to happen to the uranium hexafluoride stored in the United States?". Depleted UF6 FAQs. Argonne National Laboratory.
  22. "Are there any currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory?". Depleted UF6 FAQs. Argonne National Laboratory.

Further reading

External links

Binary hexafluorides
Known binary hexafluorides
Chalcogen binary hexafluorides
Noble gas binary hexafluorides
Transition metal binary hexafluorides
Actinide binary hexafluorides
Predicted binary hexafluorides
Noble gas binary hexafluorides
Transition metal binary hexafluorides
Actinide binary hexafluorides
Uranium compounds
U(II)
U(III)
Organouranium(III) compounds
  • U(C5H5)3
  • U(IV)
    Organouranium(IV) compounds
  • U(C8H8)2
  • U(C5H5)4
  • U(C5H5)3Cl
  • U(IV,V)
    U(IV,VI)
    U(V)
    U(VI)
    U(XII)
    • UO6 (hypothetical)
    Salts and covalent derivatives of the fluoride ion
    HF ?HeF2
    LiF BeF2 BF
    BF3
    B2F4
    +BO3
    CF4
    CxFy
    +CO3
    NF3
    FN3
    N2F2
    NF
    N2F4
    NF2
    ?NF5
    OF2
    O2F2
    OF
    O3F2
    O4F2
    ?OF4
    F2 Ne
    NaF MgF2 AlF
    AlF3
    SiF4 P2F4
    PF3
    PF5
    S2F2
    SF2
    S2F4
    SF3
    SF4
    S2F10
    SF6
    +SO4
    ClF
    ClF3
    ClF5
    ?ArF2
    ?ArF4
    KF CaF
    CaF2
    ScF3 TiF2
    TiF3
    TiF4
    VF2
    VF3
    VF4
    VF5
    CrF2
    CrF3
    CrF4
    CrF5
    ?CrF6
    MnF2
    MnF3
    MnF4
    ?MnF5
    FeF2
    FeF3
    FeF4
    CoF2
    CoF3
    CoF4
    NiF2
    NiF3
    NiF4
    CuF
    CuF2
    ?CuF3
    ZnF2 GaF2
    GaF3
    GeF2
    GeF4
    AsF3
    AsF5
    Se2F2
    SeF4
    SeF6
    +SeO3
    BrF
    BrF3
    BrF5
    KrF2
    ?KrF4
    ?KrF6
    RbF SrF
    SrF2
    YF3 ZrF2
    ZrF3
    ZrF4
    NbF4
    NbF5
    MoF4
    MoF5
    MoF6
    TcF4
    TcF
    5

    TcF6
    RuF3
    RuF
    4

    RuF5
    RuF6
    RhF3
    RhF4
    RhF5
    RhF6
    PdF2
    Pd
    PdF4
    ?PdF6
    Ag2F
    AgF
    AgF2
    AgF3
    CdF2 InF
    InF3
    SnF2
    SnF4
    SbF3
    SbF5
    TeF4
    ?Te2F10
    TeF6
    +TeO3
    IF
    IF3
    IF5
    IF7
    +IO3
    XeF2
    XeF4
    XeF6
    ?XeF8
    CsF BaF2   LuF3 HfF4 TaF5 WF4
    WF5
    WF6
    ReF4
    ReF5
    ReF6
    ReF7
    OsF4
    OsF5
    OsF6
    ?OsF
    7

    ?OsF
    8
    IrF2
    IrF3
    IrF4
    IrF5
    IrF6
    PtF2
    Pt
    PtF4
    PtF5
    PtF6
    AuF
    AuF3
    Au2F10
    ?AuF6
    AuF5•F2
    Hg2F2
    HgF2
    ?HgF4
    TlF
    TlF3
    PbF2
    PbF4
    BiF3
    BiF5
    ?PoF2
    PoF4
    PoF6
    AtF
    ?AtF3
    ?AtF5
    RnF2
    ?RnF
    4

    ?RnF
    6
    FrF RaF2   LrF3 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
    LaF3 CeF3
    CeF4
    PrF3
    PrF4
    NdF2
    NdF3
    NdF4
    PmF3 SmF
    SmF2
    SmF3
    EuF2
    EuF3
    GdF3 TbF3
    TbF4
    DyF2
    DyF3
    DyF4
    HoF3 ErF3 TmF2
    TmF3
    YbF2
    YbF3
    AcF3 ThF3
    ThF4
    PaF4
    PaF5
    UF3
    UF4
    UF5
    UF6
    NpF3
    NpF4
    NpF5
    NpF6
    PuF3
    PuF4
    PuF5
    PuF6
    AmF2
    AmF3
    AmF4
    ?AmF6
    CmF3
    CmF4
     ?CmF6
    BkF3
    BkF
    4
    CfF3
    CfF4
    EsF3
    EsF4
    ?EsF6
    Fm Md No
    Halides of actinides
    Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm
    +6 UF6
    UCl6
    NpF6 PuF6 AmF6 EsF6
    +5 PaF5
    PaCl5
    PaBr5
    PaI5
    UF5
    UCl5
    UBr5
    NpF5 PuF5
    +4 ThF4
    ThCl4
    ThBr4
    ThI4
    PaF4
    PaCl4
    PaBr4
    PaI4
    UF4
    UCl4
    UBr4
    UI4
    NpF4
    NpCl4
    NpBr4
    PuF4 AmF4 CmF4 BkF4 CfF4 EsF4
    +3 AcF3
    AcCl3
    AcBr3
    AcI3
    ThF3
    ThCl3
    ThI3
    UF3
    UCl3
    UBr3
    UI3
    NpF3
    NpCl3
    NpBr3
    NpI3
    PuF3
    PuCl3
    PuBr3
    PuI3
    AmF3
    AmCl3
    AmBr3
    AmI3
    CmF3
    CmCl3
    CmBr3
    CmI3
    BkF3
    BkCl3
    BkBr3
    BkI3
    CfF3
    CfCl3
    CfBr3
    CfI3
    EsF3
    EsCl3
    EsBr3
    EsI3
    FmCl3
    +2 ThI2
    ThCl2
    AmF2
    AmCl2
    AmBr2
    AmI2
    CfI2
    CfCl2
    EsCl2
    EsBr2
    EsI2
    FmCl2
    Categories: