Misplaced Pages

Lutetium(III) chloride: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 17:46, 23 September 2024 editDouble sharp (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, File movers, Pending changes reviewers102,057 edits top: we don't capitalise element naems← Previous edit Latest revision as of 17:46, 23 September 2024 edit undoDouble sharp (talk | contribs)Autopatrolled, Extended confirmed users, Page movers, File movers, Pending changes reviewers102,057 editsm top 
Line 82: Line 82:
'''Lutetium(III) chloride''' or '''lutetium trichloride''' is the ] composed of ] and ] with the ] LuCl<sub>3</sub>. It forms ] white ] crystals<ref name="handchem"/> and also a hygroscopic hexahydrate LuCl<sub>3</sub>·6H<sub>2</sub>O.<ref>{{Cite web|url=https://www.sigmaaldrich.com/catalog/product/aldrich/542075|title=Lutetium(III) chloride hexahydrate 542075|website=Sigma-Aldrich|access-date=2019-07-24}}</ref> Anhydrous lutetium(III) chloride has the ] (AlCl<sub>3</sub>) layer structure with octahedral lutetium ions.<ref>Wells A.F. (1984) ''Structural Inorganic Chemistry'' 5th edition Oxford Science Publications {{ISBN|0-19-855370-6}}</ref> '''Lutetium(III) chloride''' or '''lutetium trichloride''' is the ] composed of ] and ] with the ] LuCl<sub>3</sub>. It forms ] white ] crystals<ref name="handchem"/> and also a hygroscopic hexahydrate LuCl<sub>3</sub>·6H<sub>2</sub>O.<ref>{{Cite web|url=https://www.sigmaaldrich.com/catalog/product/aldrich/542075|title=Lutetium(III) chloride hexahydrate 542075|website=Sigma-Aldrich|access-date=2019-07-24}}</ref> Anhydrous lutetium(III) chloride has the ] (AlCl<sub>3</sub>) layer structure with octahedral lutetium ions.<ref>Wells A.F. (1984) ''Structural Inorganic Chemistry'' 5th edition Oxford Science Publications {{ISBN|0-19-855370-6}}</ref>


Lutetium-177, a radioisotope that can be derived from lutetium(III) chloride, is used in targeted cancer therapies.<ref>{{Cite journal |last=Sgouros |first=George |last2=Bodei |first2=Lisa |last3=McDevitt |first3=Michael R. |last4=Nedrow |first4=Jessie R. |date=September 2020 |title=Radiopharmaceutical therapy in cancer: clinical advances and challenges |url=https://www.nature.com/articles/s41573-020-0073-9 |journal=Nature Reviews Drug Discovery |language=en |volume=19 |issue=9 |pages=589–608 |doi=10.1038/s41573-020-0073-9 |issn=1474-1784|pmc=7390460 }}</ref> When lutetium-177 is attached to molecules that specifically target cancer cells, it can deliver localized radiation to destroy those cells while sparing surrounding healthy tissue.<ref>{{Cite journal |last=Vyas |first=Madhusudan |date=2021-05-01 |title=Lutetium-177: a flexible radionuclide therapeutic options |url=https://jnm.snmjournals.org/content/62/supplement_1/3039 |journal=Journal of Nuclear Medicine |language=en |volume=62 |issue=supplement 1 |pages=3039–3039 |issn=0161-5505}}</ref> This makes lutetium-177-based treatments especially valuable for cancers that are difficult to treat with traditional methods, such as neuroendocrine tumors and prostate cancer.<ref>{{Cite journal |last=Dash |first=Ashutosh |last2=Pillai |first2=Maroor Raghavan Ambikalmajan |last3=Knapp |first3=Furn F. |date=2015-06-01 |title=Production of 177Lu for Targeted Radionuclide Therapy: Available Options |url=https://link.springer.com/article/10.1007/s13139-014-0315-z |journal=Nuclear Medicine and Molecular Imaging |language=en |volume=49 |issue=2 |pages=85–107 |doi=10.1007/s13139-014-0315-z |issn=1869-3482 |pmc=4463871 |pmid=26085854}}</ref> Additionally, Lutetium(III) chloride is used in ]s, materials that emit light when exposed to radiation.<ref>{{Cite journal |last=Vogel |first=W. V. |last2=van der Marck |first2=S. C. |last3=Versleijen |first3=M. W. J. |date=2021-07-01 |title=Challenges and future options for the production of lutetium-177 |url=https://link.springer.com/article/10.1007/s00259-021-05392-2 |journal=European Journal of Nuclear Medicine and Molecular Imaging |language=en |volume=48 |issue=8 |pages=2329–2335 |doi=10.1007/s00259-021-05392-2 |issn=1619-7089 |pmc=8241800 |pmid=33974091}}</ref> These scintillators are crucial in detectors for gamma rays and other high-energy particles, used in both medical diagnostics and in scientific research.<ref>{{Cite journal |last=Das |first=Tapas |last2=Banerjee |first2=Sharmila |date=2016 |title=Theranostic Applications of Lutetium-177 in Radionuclide Therapy |url=https://pubmed.ncbi.nlm.nih.gov/25771364/ |journal=Current Radiopharmaceuticals |volume=9 |issue=1 |pages=94–101 |doi=10.2174/1874471008666150313114644 |issn=1874-4729 |pmid=25771364}}</ref> Lutetium-177, a radioisotope that can be derived from lutetium(III) chloride, is used in targeted cancer therapies.<ref>{{Cite journal |last=Sgouros |first=George |last2=Bodei |first2=Lisa |last3=McDevitt |first3=Michael R. |last4=Nedrow |first4=Jessie R. |date=September 2020 |title=Radiopharmaceutical therapy in cancer: clinical advances and challenges |url=https://www.nature.com/articles/s41573-020-0073-9 |journal=Nature Reviews Drug Discovery |language=en |volume=19 |issue=9 |pages=589–608 |doi=10.1038/s41573-020-0073-9 |issn=1474-1784|pmc=7390460 }}</ref> When lutetium-177 is attached to molecules that specifically target cancer cells, it can deliver localized radiation to destroy those cells while sparing surrounding healthy tissue.<ref>{{Cite journal |last=Vyas |first=Madhusudan |date=2021-05-01 |title=Lutetium-177: a flexible radionuclide therapeutic options |url=https://jnm.snmjournals.org/content/62/supplement_1/3039 |journal=Journal of Nuclear Medicine |language=en |volume=62 |issue=supplement 1 |pages=3039–3039 |issn=0161-5505}}</ref> This makes lutetium-177-based treatments especially valuable for cancers that are difficult to treat with traditional methods, such as neuroendocrine tumors and prostate cancer.<ref>{{Cite journal |last=Dash |first=Ashutosh |last2=Pillai |first2=Maroor Raghavan Ambikalmajan |last3=Knapp |first3=Furn F. |date=2015-06-01 |title=Production of 177Lu for Targeted Radionuclide Therapy: Available Options |url=https://link.springer.com/article/10.1007/s13139-014-0315-z |journal=Nuclear Medicine and Molecular Imaging |language=en |volume=49 |issue=2 |pages=85–107 |doi=10.1007/s13139-014-0315-z |issn=1869-3482 |pmc=4463871 |pmid=26085854}}</ref> Additionally, lutetium(III) chloride is used in ]s, materials that emit light when exposed to radiation.<ref>{{Cite journal |last=Vogel |first=W. V. |last2=van der Marck |first2=S. C. |last3=Versleijen |first3=M. W. J. |date=2021-07-01 |title=Challenges and future options for the production of lutetium-177 |url=https://link.springer.com/article/10.1007/s00259-021-05392-2 |journal=European Journal of Nuclear Medicine and Molecular Imaging |language=en |volume=48 |issue=8 |pages=2329–2335 |doi=10.1007/s00259-021-05392-2 |issn=1619-7089 |pmc=8241800 |pmid=33974091}}</ref> These scintillators are crucial in detectors for gamma rays and other high-energy particles, used in both medical diagnostics and in scientific research.<ref>{{Cite journal |last=Das |first=Tapas |last2=Banerjee |first2=Sharmila |date=2016 |title=Theranostic Applications of Lutetium-177 in Radionuclide Therapy |url=https://pubmed.ncbi.nlm.nih.gov/25771364/ |journal=Current Radiopharmaceuticals |volume=9 |issue=1 |pages=94–101 |doi=10.2174/1874471008666150313114644 |issn=1874-4729 |pmid=25771364}}</ref>


==Reactions== ==Reactions==

Latest revision as of 17:46, 23 September 2024

Lutetium(III) chloride
Names
IUPAC name Lutetium(III) chloride
Other names Lutetium chloride, lutetium trichloride
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.205 Edit this at Wikidata
EC Number
  • 233-240-1
PubChem CID
RTECS number
  • OK8400000
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/3ClH.Lu/h3*1H;/q;;;+3/p-3Key: AEDROEGYZIARPU-UHFFFAOYSA-K
  • InChI=1S/3ClH.Lu/h3*1H;/q;;;+3/p-3Key: AEDROEGYZIARPU-DFZHHIFOAO
  • Key: AEDROEGYZIARPU-UHFFFAOYSA-K
SMILES
  • Cl(Cl)Cl
Properties
Chemical formula LuCl3
Molar mass 281.325 g/mol
Appearance colorless or white monoclinic crystals
Density 3.98 g/cm
Melting point 925 °C (1,697 °F; 1,198 K)
Boiling point sublimes above 750°C
Solubility in water soluble
Structure
Crystal structure Monoclinic, mS16
Space group C2/m, No. 12
Pharmacology
License data
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Irritant
GHS labelling:
Pictograms GHS07: Exclamation mark
Signal word Warning
Hazard statements H315, H319, H335
Precautionary statements P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
2 0 1
Related compounds
Other anions Lutetium(III) oxide
Other cations Ytterbium(III) chloride
Scandium(III) chloride
Yttrium(III) chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Lutetium(III) chloride or lutetium trichloride is the chemical compound composed of lutetium and chlorine with the formula LuCl3. It forms hygroscopic white monoclinic crystals and also a hygroscopic hexahydrate LuCl3·6H2O. Anhydrous lutetium(III) chloride has the YCl3 (AlCl3) layer structure with octahedral lutetium ions.

Lutetium-177, a radioisotope that can be derived from lutetium(III) chloride, is used in targeted cancer therapies. When lutetium-177 is attached to molecules that specifically target cancer cells, it can deliver localized radiation to destroy those cells while sparing surrounding healthy tissue. This makes lutetium-177-based treatments especially valuable for cancers that are difficult to treat with traditional methods, such as neuroendocrine tumors and prostate cancer. Additionally, lutetium(III) chloride is used in scintillators, materials that emit light when exposed to radiation. These scintillators are crucial in detectors for gamma rays and other high-energy particles, used in both medical diagnostics and in scientific research.

Reactions

Pure lutetium metal can be produced from lutetium(III) chloride by heating it together with elemental calcium:

2 LuCl3 + 3 Ca → 2 Lu + 3 CaCl2

See also

References

  1. "Chemistry: Periodic Table: Lutetium: compound data (lutetium (III) chloride)". WebElements. Retrieved 2024-09-06.
  2. Perry, Dale L.; Phillips, Sidney L. (1995), Handbook of Inorganic Compounds, CRC Press, p. 232, ISBN 0-8493-8671-3, retrieved 2008-06-27
  3. ^ Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, Florida: CRC Press, p. 472, ISBN 0-8493-0594-2, retrieved 2008-06-27
  4. "450960 Lutetium(III) chloride anhydrous, powder, 99.99% trace metals basis". Sigma-Aldrich. Retrieved 2008-06-27.
  5. "Lutetium chloride". pubchem.ncbi.nlm.nih.gov.
  6. "Lutetium(III) chloride hexahydrate 542075". Sigma-Aldrich. Retrieved 2019-07-24.
  7. Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN 0-19-855370-6
  8. Sgouros, George; Bodei, Lisa; McDevitt, Michael R.; Nedrow, Jessie R. (September 2020). "Radiopharmaceutical therapy in cancer: clinical advances and challenges". Nature Reviews Drug Discovery. 19 (9): 589–608. doi:10.1038/s41573-020-0073-9. ISSN 1474-1784. PMC 7390460.
  9. Vyas, Madhusudan (2021-05-01). "Lutetium-177: a flexible radionuclide therapeutic options". Journal of Nuclear Medicine. 62 (supplement 1): 3039–3039. ISSN 0161-5505.
  10. Dash, Ashutosh; Pillai, Maroor Raghavan Ambikalmajan; Knapp, Furn F. (2015-06-01). "Production of 177Lu for Targeted Radionuclide Therapy: Available Options". Nuclear Medicine and Molecular Imaging. 49 (2): 85–107. doi:10.1007/s13139-014-0315-z. ISSN 1869-3482. PMC 4463871. PMID 26085854.
  11. Vogel, W. V.; van der Marck, S. C.; Versleijen, M. W. J. (2021-07-01). "Challenges and future options for the production of lutetium-177". European Journal of Nuclear Medicine and Molecular Imaging. 48 (8): 2329–2335. doi:10.1007/s00259-021-05392-2. ISSN 1619-7089. PMC 8241800. PMID 33974091.
  12. Das, Tapas; Banerjee, Sharmila (2016). "Theranostic Applications of Lutetium-177 in Radionuclide Therapy". Current Radiopharmaceuticals. 9 (1): 94–101. doi:10.2174/1874471008666150313114644. ISSN 1874-4729. PMID 25771364.
  13. Patnaik, Pradyot (2004), Handbook of Inorganic Chemicals, Amsterdam: McGraw-Hill Professional, p. 244, ISBN 0-07-049439-8, retrieved 2008-06-27
Lutetium compounds
Salts and covalent derivatives of the chloride ion
HCl He
LiCl BeCl2 B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaCl MgCl2 AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2 Ar
KCl CaCl
CaCl2
ScCl3 TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2 CuCl
CuCl2
ZnCl2 GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrCl Kr
RbCl SrCl2 YCl3 ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3 PdCl2 AgCl CdCl2 InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsCl BaCl2 * LuCl3 HfCl4 TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
AuCl
(Au)2
AuCl3
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3 PoCl2
PoCl4
AtCl Rn
FrCl RaCl2 ** LrCl3 RfCl4 DbCl5 SgO2Cl2 BhO3Cl Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaCl3 CeCl3 PrCl3 NdCl2
NdCl3
PmCl3 SmCl2
SmCl3
EuCl2
EuCl3
GdCl3 TbCl3 DyCl2
DyCl3
HoCl3 ErCl3 TmCl2
TmCl3
YbCl2
YbCl3
** AcCl3 ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3 PuCl3 AmCl2
AmCl3
CmCl3 BkCl3 CfCl3
CfCl2
EsCl2
EsCl3
FmCl2 MdCl2 NoCl2
Lanthanide salts of halides
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
+4 CeF4 PrF4 NdF4 TbF4 DyF4
+3 LaF3
LaCl3
LaBr3
LaI3
CeF3
CeCl3
CeBr3
CeI3
PrF3
PrCl3
PrBr3
PrI3
NdF3
NdCl3
NdBr3
NdI3
PmF3
PmCl3
PmBr3
PmI3
SmF3
SmCl3
SmBr3
SmI3
EuF3
EuCl3
EuBr3
EuI3
GdF3
GdCl3
GdBr3
GdI3
TbF3
TbCl3
TbBr3
TbI3
DyF3
DyCl3
DyBr3
DyI3
HoF3
HoCl3
HoBr3
HoI3
ErF3
ErCl3
ErBr3
ErI3
TmF3
TmCl3
TmBr3
TmI3
YbF3
YbCl3
YbBr3
YbI3
LuF3
LuCl3
LuBr3
LuI3
+2 LaI2 CeI2 PrI2 NdF2
NdCl2
NdBr2
NdI2
SmF2
SmCl2
SmBr2
SmI2
EuF2
EuCl2
EuBr2
EuI2
GdI2 DyF2
DyCl2
DyBr2
DyI2
TmF2
TmCl2
TmBr2
TmI2
YbF2
YbCl2
YbBr2
YbI2
Categories: