Misplaced Pages

Glutamine

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Levoglutamide) "Gln" redirects here. For other uses, see GLN (disambiguation). Not to be confused with Glutamic acid or Glutaric acid.

Glutamine

Skeletal formula of L-glutamine
Ball-and-stick model
Space-filling model
Names
IUPAC name Glutamine
Other names L-Glutamine
(levo)glutamide
2,5-Diamino-5-oxopentanoic acid
2-Amino-4-carbamoylbutanoic acid
Endari
Identifiers
CAS Number
3D model (JSmol)
Abbreviations Gln, Q
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.000.266 Edit this at Wikidata
EC Number
  • 200-292-1
IUPHAR/BPS
KEGG
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C5H10N2O3/c6-3(5(9)10)1-2-4(7)8/h3H,1-2,6H2,(H2,7,8)(H,9,10)/t3-/m0/s1Key: ZDXPYRJPNDTMRX-VKHMYHEASA-N
SMILES
Properties
Chemical formula C5H10N2O3
Molar mass 146.146 g·mol
Melting point decomposes around 185°C
Solubility in water soluble
Acidity (pKa) 2.2 (carboxyl), 9.1 (amino)
Chiral rotation (D) +6.5º (H2O, c = 2)
Pharmacology
ATC code A16AA03 (WHO)
Supplementary data page
Glutamine (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound Pharmaceutical compound
L-glutamine oral powder
Clinical data
Trade namesEndari, Nutrestore
AHFS/Drugs.comMonograph
MedlinePlusa617035
License data
Routes of
administration
By mouth
Drug classGastrointestinal agent
ATC code
Legal status
Legal status
Identifiers
IUPAC name
  • (S)-2,5-diamino-5-oxopentanoic acid
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
PDB ligand
CompTox Dashboard (EPA)
ECHA InfoCard100.000.266 Edit this at Wikidata
Chemical and physical data
FormulaC5H10N2O3
Molar mass146.146 g·mol
3D model (JSmol)
SMILES
  • C(CC(=O)N)C(C(=O)O)N
InChI
  • InChI=1S/C5H10N2O3/c6-3(5(9)10)1-2-4(7)8/h3H,1-2,6H2,(H2,7,8)(H,9,10)/t3-/m0/s1
  • Key:ZDXPYRJPNDTMRX-VKHMYHEASA-N
Data page
Glutamine (data page)

Glutamine (symbol Gln or Q) is an α-amino acid that is used in the biosynthesis of proteins. Its side chain is similar to that of glutamic acid, except the carboxylic acid group is replaced by an amide. It is classified as a charge-neutral, polar amino acid. It is non-essential and conditionally essential in humans, meaning the body can usually synthesize sufficient amounts of it, but in some instances of stress, the body's demand for glutamine increases, and glutamine must be obtained from the diet. It is encoded by the codons CAA and CAG. It is named after glutamic acid, which in turn is named after its discovery in cereal proteins, gluten.

In human blood, glutamine is the most abundant free amino acid.

The dietary sources of glutamine include especially the protein-rich foods like beef, chicken, fish, dairy products, eggs, vegetables like beans, beets, cabbage, spinach, carrots, parsley, vegetable juices and also in wheat, papaya, Brussels sprouts, celery, kale and fermented foods like miso.

The one-letter symbol Q for glutamine was assigned in alphabetical sequence to N for asparagine, being larger by merely one methylene –CH2– group. Note that P was used for proline, and O was avoided due to similarity with D. The mnemonic Qlutamine was also proposed.

Functions

Glutamine plays a role in a variety of biochemical functions:

Roles in metabolism

Glutamine maintains redox balance by participating in glutathione synthesis and contributing to anabolic processes such as lipid synthesis by reductive carboxylation.

Glutamine provides a source of carbon and nitrogen for use in other metabolic processes. Glutamine is present in serum at higher concentrations than other amino acids and is essential for many cellular functions. Examples include the synthesis of nucleotides and non-essential amino acids. One of the most important functions of glutamine is its ability to be converted into α-KG, which helps to maintain the flow of the tricarboxylic acid cycle, generating ATP via the electron carriers NADH and FADH2. The highest consumption of glutamine occurs in the cells of the intestines, kidney cells (where it is used for acid-base balance), activated immune cells, and many cancer cells.

Production

Glutamine is produced industrially using mutants of Brevibacterium flavum, which gives ca. 40 g/L in 2 days using glucose as a carbon source.

Biosynthesis

Glutamine synthesis from glutamate and ammonia is catalyzed by the enzyme glutamine synthetase. The majority of glutamine production occurs in muscle tissue, accounting for about 90% of all glutamine synthesized. Glutamine is also released, in small amounts, by the lungs and brain. Although the liver is capable of glutamine synthesis, its role in glutamine metabolism is more regulatory than productive, as the liver takes up glutamine derived from the gut via the hepatic portal system.

Uses

Nutrition

Glutamine is the most abundant naturally occurring, nonessential amino acid in the human body, and one of the few amino acids that can directly cross the blood–brain barrier. Humans obtain glutamine through catabolism of proteins in foods they eat. In states where tissue is being built or repaired, like growth of babies, or healing from wounds or severe illness, glutamine becomes conditionally essential.

Sickle cell disease

This section is missing information about (possible) mechanism of action, pharmacokinetics in PMID 31985279. Please expand the section to include this information. Further details may exist on the talk page. (November 2023)

In 2017, the U.S. Food and Drug Administration (FDA) approved L-glutamine oral powder, marketed as Endari, to reduce severe complications of sickle cell disease in people aged five years and older with the disorder.

The safety and efficacy of L-glutamine oral powder were studied in a randomized trial of subjects ages five to 58 years old with sickle cell disease who had two or more painful crises within the 12 months prior to enrollment in the trial. Subjects were assigned randomly to treatment with L-glutamine oral powder or placebo, and the effect of treatment was evaluated over 48 weeks. Subjects who were treated with L-glutamine oral powder experienced fewer hospital visits for pain treated with a parenterally administered narcotic or ketorolac (sickle cell crises), on average, compared to subjects who received a placebo (median 3 vs. median 4), fewer hospitalizations for sickle cell pain (median 2 vs. median 3), and fewer days in the hospital (median 6.5 days vs. median 11 days). Subjects who received L-glutamine oral powder also had fewer occurrences of acute chest syndrome (a life-threatening complication of sickle cell disease) compared with patients who received a placebo (8.6 percent vs. 23.1 percent).

Common side effects of L-glutamine oral powder include constipation, nausea, headache, abdominal pain, cough, pain in the extremities, back pain and chest pain.

L-glutamine oral powder received orphan drug designation. The FDA granted the approval of Endari to Emmaus Medical Inc.

Medical food

Glutamine is marketed as medical food and is prescribed when a medical professional believes a person in their care needs supplementary glutamine due to metabolic demands beyond what can be met by endogenous synthesis or diet.

Safety

Glutamine is safe in adults and in preterm infants. Although glutamine is metabolized to glutamate and ammonia, both of which have neurological effects, their concentrations are not increased much, and no adverse neurological effects were detected. The observed safe level for supplemental L-glutamine in normal healthy adults is 14 g/day.

Adverse effects of glutamine have been described for people receiving home parenteral nutrition and those with liver-function abnormalities. Although glutamine has no effect on the proliferation of tumor cells, it is still possible that glutamine supplementation may be detrimental in some cancer types.

Ceasing glutamine supplementation in people adapted to very high consumption may initiate a withdrawal effect, raising the risk of health problems such as infections or impaired integrity of the intestine.

Structure

Glutamine can exist in either of two enantiomeric forms, L-glutamine and D-glutamine. The L-form is found in nature. Glutamine contains an α-amino group which is in the protonated −NH3 form under biological conditions and a carboxylic acid group which is in the deprotonated −COO form, known as carboxylate, under physiological conditions.

Glutamine zwitterionic forms at neutral pH: L-glutamine (left) and D-glutamine

Research

Consequences of glutamine depletion in critically ill individuals

Glutamine mouthwash may be useful to prevent oral mucositis in people undergoing chemotherapy but intravenous glutamine does not appear useful to prevent mucositis in the GI tract.

Glutamine supplementation was thought to have potential to reduce complications in people who are critically ill or who have had abdominal surgery but this was based on poor quality clinical trials. Supplementation does not appear to be useful in adults or children with Crohn's disease or inflammatory bowel disease, but clinical studies as of 2016 were underpowered. Supplementation does not appear to have an effect in infants with significant problems of the stomach or intestines.

Some athletes use L-glutamine as supplement. Studies support the positive effects of the chronic oral administration of the supplement on the injury and inflammation induced by intense aerobic and exhaustive exercise, but the effects on muscle recovery from weight training are unclear.

Stress conditions for plants (drought, injury, soil salnity) cause the synthesis of such plant enzymes as superoxide dismutase, L-ascorbate oxidase, and Delta 1 DNA polymerase. Limiting this process, initiated by the conditions of strong soil salinity can be achieved by administering exogenous glutamine to plants. The decrease in the level of expression of genes responsible for the synthesis of superoxide dismutase increases with the increase in glutamine concentration.

See also

References

  1. ^ "FDA approves new treatment for sickle cell disease". U.S. Food and Drug Administration (FDA) (Press release). 7 July 2017. Retrieved 10 July 2017. Public Domain This article incorporates text from this source, which is in the public domain.
  2. Weast RC, ed. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, Florida: CRC Press. p. C-311. ISBN 0-8493-0462-8..
  3. "Nomenclature and Symbolism for Amino Acids and Peptides". IUPAC-IUB Joint Commission on Biochemical Nomenclature. 1983. Archived from the original on 9 October 2008. Retrieved 5 March 2018.
  4. Food and Nutrition Board of the Institute of Medicine (2006). "Protein and Amino Acids". In Otten JJ, Hellwig JP, Meyers LD (eds.). Dietary Reference Intakes: The Essential Guide to Nutrient Requirements (PDF). Washington, D.C.: National Academies Press. p. 147. ISBN 978-0-309-10091-5. Archived from the original (PDF) on 9 March 2014.
  5. Lacey JM, Wilmore DW (August 1990). "Is glutamine a conditionally essential amino acid?". Nutrition Reviews. 48 (8): 297–309. doi:10.1111/j.1753-4887.1990.tb02967.x. PMID 2080048.
  6. ^ Saffran M (April 1998). "Amino acid names and parlor games: from trivial names to a one-letter code, amino acid names have strained students' memories. Is a more rational nomenclature possible?". Biochemical Education. 26 (2): 116–118. doi:10.1016/s0307-4412(97)00167-2. ISSN 0307-4412.
  7. ^ Brosnan JT (June 2003). "Interorgan amino acid transport and its regulation". The Journal of Nutrition. 133 (6 Suppl 1): 2068S – 2072S. doi:10.1093/jn/133.6.2068S. PMID 12771367.Open access icon
  8. ^ Corbet C, Feron O (July 2015). Corbet C, Feron O (eds.). "Metabolic and mind shifts: from glucose to glutamine and acetate addictions in cancer". Current Opinion in Clinical Nutrition and Metabolic Care. 18 (4): 346–353. doi:10.1097/MCO.0000000000000178. PMID 26001655. S2CID 1478014.
  9. Hall JE, Guyton AC (2006). Textbook of Medical Physiology (11th ed.). St. Louis, Mo: Elsevier Saunders. p. 393. ISBN 978-0-7216-0240-0.
  10. Aledo JC (July 2004). "Glutamine breakdown in rapidly dividing cells: waste or investment?". BioEssays. 26 (7): 778–785. doi:10.1002/bies.20063. PMID 15221859.
  11. ^ Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y (July 2007). "Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells". The Journal of Cell Biology. 178 (1): 93–105. doi:10.1083/jcb.200703099. PMC 2064426. PMID 17606868.
  12. Zielińska M, Albrecht J, Popek M (2022). "Dysregulation of Astrocytic Glutamine Transport in Acute Hyperammonemic Brain Edema". Frontiers in Neuroscience. 16: 874750. doi:10.3389/fnins.2022.874750. PMC 9207324. PMID 35733937.
  13. Dabrowska K, Skowronska K, Popek M, Obara-Michlewska M, Albrecht J, Zielinska M (2018). "Roles of Glutamate and Glutamine Transport in Ammonia Neurotoxicity: State of the Art and Question Marks". Endocrine, Metabolic & Immune Disorders Drug Targets. 18 (4): 306–315. doi:10.2174/1871520618666171219124427. PMID 29256360. S2CID 26569656.
  14. ^ Yamamoto T, Shimoyama T, Kuriyama M (April 2017). "Dietary and enteral interventions for Crohn's disease". Current Opinion in Biotechnology. 44: 69–73. doi:10.1016/j.copbio.2016.11.011. PMID 27940405.
  15. Jiang L, Shestov AA, Swain P, Yang C, Parker SJ, Wang QA, et al. (April 2016). "Reductive carboxylation supports redox homeostasis during anchorage-independent growth". Nature. 532 (7598): 255–258. Bibcode:2016Natur.532..255J. doi:10.1038/nature17393. PMC 4860952. PMID 27049945.
  16. Welbourne TC (March 1979). "Ammonia production and glutamine incorporation into glutathione in the functioning rat kidney". Canadian Journal of Biochemistry. 57 (3): 233–237. doi:10.1139/o79-029. PMID 436006.
  17. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. (December 2007). "Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis". Proceedings of the National Academy of Sciences of the United States of America. 104 (49): 19345–19350. Bibcode:2007PNAS..10419345D. doi:10.1073/pnas.0709747104. PMC 2148292. PMID 18032601.
  18. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (January 2008). "The biology of cancer: metabolic reprogramming fuels cell growth and proliferation". Cell Metabolism. 7 (1): 11–20. doi:10.1016/j.cmet.2007.10.002. PMID 18177721.
  19. Newsholme P (September 2001). "Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection?". The Journal of Nutrition. 131 (9 Suppl): 2515S – 2522S, discussion 2522S–4S. doi:10.1093/jn/131.9.2515S. PMID 11533304.
  20. Fernandez-de-Cossio-Diaz J, Vazquez A (October 2017). "Limits of aerobic metabolism in cancer cells". Scientific Reports. 7 (1): 13488. Bibcode:2017NatSR...713488F. doi:10.1038/s41598-017-14071-y. PMC 5647437. PMID 29044214.
  21. Drauz K, Grayson I, Kleemann A, Krimmer HP, Leuchtenberger W, Weckbecker C (2007). "Amino Acids". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_057.pub2. ISBN 978-3527306732.
  22. Newsholme P, Lima MM, Procopio J, Pithon-Curi TC, Doi SQ, Bazotte RB, et al. (February 2003). "Glutamine and glutamate as vital metabolites". Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas. 36 (2): 153–163. doi:10.1590/S0100-879X2003000200002. PMID 12563517.
  23. ^ Watford M (September 2015). "Glutamine and glutamate: Nonessential or essential amino acids?". Animal Nutrition. 1 (3): 119–122. doi:10.1016/j.aninu.2015.08.008. PMC 5945979. PMID 29767158.
  24. "GlutaSolve, NutreStore, SYMPT-X G.I., SYMPT-X Glutamine (glutamine) Drug Side Effects, Interactions, and Medication Information on eMedicineHealth". eMedicineHealth. Retrieved 24 January 2017.
  25. ^ Garlick PJ (September 2001). "Assessment of the safety of glutamine and other amino acids". The Journal of Nutrition. 131 (9 Suppl): 2556S – 2561S. doi:10.1093/jn/131.9.2556S. PMID 11533313.
  26. Shao A, Hathcock JN (April 2008). "Risk assessment for the amino acids taurine, L-glutamine and L-arginine". Regulatory Toxicology and Pharmacology. 50 (3): 376–399. doi:10.1016/j.yrtph.2008.01.004. PMID 18325648.
  27. Buchman AL (July 2001). "Glutamine: commercially essential or conditionally essential? A critical appraisal of the human data". The American Journal of Clinical Nutrition. 74 (1): 25–32. doi:10.1093/ajcn/74.1.25. PMID 11451714.
  28. ^ Holecek M (September 2013). "Side effects of long-term glutamine supplementation". Journal of Parenteral and Enteral Nutrition. 37 (5): 607–616. doi:10.1177/0148607112460682. PMID 22990615.
  29. Stehle P, Kuhn KS (2015). "Glutamine: an obligatory parenteral nutrition substrate in critical care therapy". BioMed Research International. 2015: 545467. doi:10.1155/2015/545467. PMC 4606408. PMID 26495301.
  30. Berretta M, Michieli M, Di Francia R, Cappellani A, Rupolo M, Galvano F, et al. (January 2013). "Nutrition in oncologic patients during antiblastic treatment". Frontiers in Bioscience. 18 (1): 120–132. doi:10.2741/4091. PMID 23276913.
  31. Tao KM, Li XQ, Yang LQ, Yu WF, Lu ZJ, Sun YM, et al. (September 2014). "Glutamine supplementation for critically ill adults". The Cochrane Database of Systematic Reviews. 2018 (9): CD010050. doi:10.1002/14651858.CD010050.pub2. PMC 6517119. PMID 25199493.
  32. Moe-Byrne T, Brown JV, McGuire W (April 2016). McGuire W (ed.). "Glutamine supplementation to prevent morbidity and mortality in preterm infants". The Cochrane Database of Systematic Reviews. 4 (4): CD001457. doi:10.1002/14651858.CD001457.pub6. PMC 7055588. PMID 27089158.
  33. Raizel R, Tirapegui J (5 December 2018). "Role of glutamine, as free or dipeptide form, on muscle recovery from resistance training: a review study". Nutrire. 43 (1): 28. doi:10.1186/s41110-018-0087-9. ISSN 2316-7874. S2CID 81105808.
  34. ^ Ulukapi K, Nasircilar AG (February 2024). "The role of exogenous glutamine on germination, plant development and transcriptional expression of some stress-related genes in onion under salt stres". Folia Horticulturae. 36 (1). Polish Society of Horticultural Science: 19–34. doi:10.2478/fhort-2024-0002. S2CID 19887643.

External links

Other alimentary tract and metabolism products (A16)
Amino acids and derivatives
Enzymes
Other
Encoded (proteinogenic) amino acids
General topics
Unspecified L-amino acid
By properties
Aliphatic
Aromatic
Polar, uncharged
Positive charge (pKa)
Negative charge (pKa)
Dietary supplements
Types
Vitamins and
chemical elements
("minerals")
Other common
ingredients
Related articles
GABA receptor modulators
Ionotropic
GABAATooltip γ-Aminobutyric acid A receptor
GABAATooltip γ-Aminobutyric acid A-rho receptor
Metabotropic
GABABTooltip γ-Aminobutyric acid B receptor
See also
Receptor/signaling modulators
GABAA receptor positive modulators
GABA metabolism/transport modulators
Glutamate receptor modulators
Ionotropic glutamate receptor modulators
AMPARTooltip α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
KARTooltip Kainate receptor
NMDARTooltip N-Methyl-D-aspartate receptor
Metabotropic glutamate receptor modulators
Group I
mGluR1Tooltip Metabotropic glutamate receptor 1
mGluR5Tooltip Metabotropic glutamate receptor 5
Group II
mGluR2Tooltip Metabotropic glutamate receptor 2
mGluR3Tooltip Metabotropic glutamate receptor 3
Group III
mGluR4Tooltip Metabotropic glutamate receptor 4
mGluR6Tooltip Metabotropic glutamate receptor 6
mGluR7Tooltip Metabotropic glutamate receptor 7
mGluR8Tooltip Metabotropic glutamate receptor 8
See also: Receptor/signaling modulatorsIonotropic glutamate receptor modulatorsGlutamate metabolism/transport modulators
Portal: Categories: