Misplaced Pages

Fluoroboric acid

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Fluoroboric acid
Canonical, skeletal formula of oxonium tetrafluoroborate
Hydronium tetrafluoroborate
Hydronium cation
Tetrafluoroborate anion
Names
Preferred IUPAC name Tetrafluoroboric acid
Other names
  • Fluoboric acid
  • Fluoroboric acid
  • Hydrogen tetrafluoroborate
  • Oxonium tetrafluoroboranuide
  • Oxonium tetrafluoridoborate(1-)
  • Oxonium tetrafluoroborate
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.037.165 Edit this at Wikidata
EC Number
  • 240-898-3
Gmelin Reference 21702
MeSH Fluoroboric+acid
PubChem CID
RTECS number
  • ED2685000
UNII
UN number 1775
CompTox Dashboard (EPA)
InChI
  • InChI=1S/BF4H/c2-1(3,4)5/h2HKey: YKRRMQXMWYXWJW-UHFFFAOYSA-N
SMILES
  • F(F)(F)
  • .F(F)(F)F
Properties
Chemical formula H[BF4]
Molar mass 87.81 g·mol
Appearance Colourless liquid
Melting point −90 °C (−130 °F; 183 K)
Boiling point 130 °C (266 °F; 403 K)
Acidity (pKa) ~1.8 (MeCN solution)
Hazards
GHS labelling:
Pictograms GHS05: Corrosive
Signal word Danger
Hazard statements H314
Precautionary statements P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3 0 0
Safety data sheet (SDS) External MSDS
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Fluoroboric acid or tetrafluoroboric acid (archaically, fluoboric acid) is an inorganic compound with the simplified chemical formula H[BF4]. Solvent-free tetrafluoroboric acid (H[BF4]) has not been reported. The term "fluoroboric acid" usually refers to a range of compounds including hydronium tetrafluoroborate ([H3O][BF4]), which are available as solutions. The ethyl ether solvate is also commercially available, where the fluoroboric acid can be represented by the formula [H((CH3CH2)2O)n][BF4], where n is 2.

It is mainly produced as a precursor to other fluoroborate salts. It is a strong acid. Fluoroboric acid is corrosive and attacks the skin. It is available commercially as a solution in water and other solvents such as diethyl ether. It is a strong acid with a weakly coordinating, non-oxidizing conjugate base. It is structurally similar to perchloric acid, but lacks the hazards associated with oxidants.

Structure and production

Pure H[BF4] has not been described. The same holds true for the superacids that are known by the simplified formulas H[PF6] and H[SbF6]. However, a solution of BF3 in HF is highly acidic, having an approximate speciation of [H2F][BF4] (fluoronium tetrafluoroborate) and a Hammett acidity function of −16.6 at 7 mol % BF3, easily qualifying as a superacid. Although the solvent-free H[BF4] has not been isolated, its solvates are well characterized. These salts consist of protonated solvent as a cation, e.g., H3O and H5O+2, and the tetrahedral BF−4 anion. The anion and cations are strongly hydrogen-bonded.

Subunit of crystal structure of [H3O][BF4] highlighting the hydrogen bonding between the cation and the anion

Aqueous solutions of H[BF4] are produced by dissolving boric acid in aqueous hydrofluoric acid. Three equivalents of HF react to give the intermediate boron trifluoride and the fourth gives fluoroboric acid:

B(OH)3 + 4 HF → H3O + BF−4 + 2 H2O

An anhydrous fluoroboric acid solution can be prepared by adding aqueous fluoroboric acid to an excess of acetic anhydride at 0°C, which produces a solution of fluoroboric acid, acetic acid, and residual acetic anhydride.

Acidity

The acidity of fluoroboric acid is complicated by the fact that its name refers to a range of different compounds, e.g. [H(CH3CH2)2O][BF4] (dimethyloxonium tetrafluoroborate), [H3O][BF4] (oxonium tetrafluoroborate), and HF·BF3 (hydrogen fluoride-boron trifluoride 1:1 adduct) – each with a different acidity. The aqueous pKa is quoted as −0.44. Titration of [N((CH2)3CH3)4][BF4] (tetrabutylammonium tetrafluoroborate) in acetonitrile solution indicates that H[BF4], i.e., HF·BF3, has a pKa of 1.6 in that solvent. Its acidity is thus comparable to that of fluorosulfonic acid.

Applications

Fluoroboric acid is the principal precursor to fluoroborate salts, which are typically prepared by treating the metal oxides with fluoroboric acid. The inorganic salts are intermediates in the manufacture of flame-retardant materials and glazing frits, and in electrolytic generation of boron. H[BF4] is also used in aluminum etching and acid pickling.

Organic chemistry

H[BF4] is used as a catalyst for alkylations and polymerizations. In carbohydrate protection reactions, ethereal fluoroboric acid is an efficient and cost-effective catalyst for transacetalation and isopropylidenation reactions. Acetonitrile solutions cleave acetals and some ethers. Many reactive cations have been obtained using fluoroboric acid, e.g. tropylium tetrafluoroborate (C7H7[BF4]), triphenylcarbenium tetrafluoroborate (Ph3C][BF4]), triethyloxonium tetrafluoroborate (Et3O][BF4]), and benzenediazonium tetrafluoroborate ([PhN2][BF4]).

Electroplating

Solutions of H[BF4] are used in the electroplating of tin and tin alloys. In this application, methanesulfonic acid is displacing the use of H[BF4]. Fluoroboric acid is also used for high-speed electroplating of copper in fluoroborate baths.

Safety

Fluoroboric acid is toxic and attacks skin and eyes. It attacks glass. It hydrolyzes, releasing corrosive, volatile hydrogen fluoride.

Other fluoroboric acids

A series of fluoroboric acids is known in aqueous solutions. The series can be presented as follows:

  • H[B(OH)4] (hydrogen tetrahydroxyborate) (not a fluoroboric acid)
  • H[BF(OH)3] (hydrogen fluoro(trihydroxy)borate)
  • H[BF2(OH)2] (hydrogen difluoro(dihydroxy)borate)
  • H[BF3(OH)] (hydrogen trifluoro(hydroxy)borate)
  • H[BF4] (hydrogen tetrafluoroborate)

See also

References

  1. IUPAC. "Nomenclature of Inorganic Chemistry". Retrieved 2021-04-08.
  2. ^ Kütt, A., et al., "Equilibrium Acidities of Superacids", J. Org. Chem. 2010, volume 76, pp. 391-395. doi:10.1021/jo101409p
  3. ^ Gregory K. Friestad, Bruce P. Branchaud "Tetrafluoroboric Acid" E-Eros Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rt035
  4. Juhasz, Mark; Hoffmann, Stephan; Stoyanov, Evgenii; Kim, Kee-Chan; Reed, Christopher A. (2004-10-11). "The Strongest Isolable Acid". Angewandte Chemie International Edition. 43 (40): 5352–5355. doi:10.1002/anie.200460005. ISSN 1433-7851. PMID 15468064.
  5. Reed, Christopher A. (2005). "Carborane Acids. New "strong yet gentle" acids for organic and inorganic chemistry" (PDF). Chem. Commun. (13): 1669–1677. doi:10.1039/B415425H. ISSN 1359-7345. PMID 15791295.
  6. Olah, George A.; Surya Prakash, G. K.; Sommer, Jean; Molnar, Arpad (2009-02-03). Superacid chemistry. Olah, George A. (George Andrew), 1927-2017,, Olah, George A. (George Andrew), 1927-2017. (2nd ed.). Hoboken, N.J. ISBN 9780471596684. OCLC 191809598.{{cite book}}: CS1 maint: location missing publisher (link)
  7. Mootz, D.; Steffen, M. "Crystal structures of acid hydrates and oxonium salts. XX. Oxonium tetrafluoroborates H3OBF4, BF4, and BF4", Zeitschrift für Anorganische und Allgemeine Chemie 1981, vol. 482, pp. 193-200. doi:10.1002/zaac.19814821124
  8. Brotherton, R. J.; Weber, C. J.; Guibert, C. R.; Little, J. L. "Boron Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a04_309. ISBN 978-3527306732.
  9. Flood, D. T. (1933). "Fluorobenzene" (PDF). Organic Syntheses. 13: 46; Collected Volumes, vol. 2, p. 295.
  10. Wudl, F.; Kaplan, M. L., "2,2′-Bi-1,3-Dithiolylidene (Tetrathiafulvalene, TTF) and its Radical Cation Salts" Inorg. Synth. 1979, vol. 19, 27. doi:10.1002/9780470132500.ch7
  11. ^ Balaji, R.; Pushpavanam, Malathy (2003). "Methanesulphonic acid in electroplating related metal finishing industries". Transactions of the Imf. 81 (5): 154–158. doi:10.1080/00202967.2003.11871526. S2CID 91584456.
  12. Barauskas, Romualdas "Ron" (January 1, 2000). "Copper plating". Metal Finishing. 98 (1): 234–247. doi:10.1016/S0026-0576(00)80330-X. ISSN 0026-0576. Retrieved July 21, 2022.
  13. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.

Further reading

  • Albert, R.; Dax, K.; Pleschko, R.; Stütz, A. E. (1985). "Tetrafluoroboric acid, an efficient catalyst in carbohydrate protection and deprotection reactions". Carbohydrate Research. 137: 282–290. doi:10.1016/0008-6215(85)85171-5.
  • Bandgar, B. P.; Patil, A. V.; Chavan, O. S. (2006). "Silica supported fluoroboric acid as a novel, efficient and reusable catalyst for the synthesis of 1,5-benzodiazepines under solvent-free conditions". Journal of Molecular Catalysis A: Chemical. 256 (1–2): 99–105. doi:10.1016/j.molcata.2006.04.024.
  • Heintz, R. A.; Smith, J. A.; Szalay, P. S.; Weisgerber, A.; Dunbar, K. R. (2002). Homoleptic Transition Metal Acetonitrile Cations with Tetrafluoroborate or Trifluoromethanesulfonate Anions. Inorganic Syntheses. Vol. 33. pp. 75–83. doi:10.1002/0471224502. ISBN 9780471208259.
  • Housecroft, C. E.; Sharpe, A. G. (2004). Inorganic Chemistry (2nd ed.). Prentice Hall. p. 307. ISBN 978-0-13-039913-7.
  • Meller, A. (1988). "Boron". Gmelin Handbook of Inorganic Chemistry. Vol. 3. New York: Springer-Verlag. pp. 301–310.
  • Perry, D. L.; Phillips, S. L. (1995). Handbook of Inorganic Compounds (1st ed.). Boca Raton: CRC Press. p. 1203. ISBN 9780849386718.
  • Wamser, C. A. (1948). "Hydrolysis of Fluoboric Acid in Aqueous Solution". Journal of the American Chemical Society. 70 (3): 1209–1215. doi:10.1021/ja01183a101.
  • Wilke-Dörfurt, E.; Balz, G. (1927). "Zur Kenntnis der Borfluorwasserstoffsäure und ihrer Salze". Zeitschrift für Anorganische und Allgemeine Chemie. 159 (1): 197–225. doi:10.1002/zaac.19271590118.

External links

Hydrogen compounds
Fluorine compounds
Salts and covalent derivatives of the fluoride ion
HF ?HeF2
LiF BeF2 BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2 Ne
NaF MgF2 AlF
AlF3
SiF4 P2F4
PF3
PF5
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KF CaF
CaF2
ScF3 TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2 GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbF SrF
SrF2
YF3 ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2 InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsF BaF2   LuF3 HfF4 TaF5 WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
?PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrF RaF2   LrF3 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaF3 CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3 SmF
SmF2
SmF3
EuF2
EuF3
GdF3 TbF3
TbF4
DyF2
DyF3
DyF4
HoF3 ErF3 TmF2
TmF3
YbF2
YbF3
AcF3 ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
Fm Md No
PF−6, AsF−6, SbF−6 compounds
AlF2−5, AlF3−6 compounds
chlorides, bromides, iodides
and pseudohalogenides
SiF2−6, GeF2−6 compounds
Oxyfluorides
Organofluorides
with transition metal,
lanthanide, actinide, ammonium
nitric acids
bifluorides
thionyl, phosphoryl,
and iodosyl
Chemical formulas
Categories: