Misplaced Pages

Hydrogen fluoride: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 01:01, 17 October 2017 edit65.33.145.183 (talk) StructureTag: Incorrectly formatted external link or image← Previous edit Revision as of 01:01, 17 October 2017 edit undo72.184.244.25 (talk) better is butter gooberTag: shoutingNext edit →
Line 76: Line 76:
}} }}


'''BATMAN IS ALWAYS THE ANSWER!!! YOU QUESTION BATMAN YOU GO TO HELL!!!! SATAN WILL NOT EVEN EXEPT YOU AND U WILL GO TO INTERNET EXPLORER!!!!.
'''Hydrogen fluoride''' is a ] with the ] {{Chemical formula|H||F|}}. This colorless gas or liquid is the principal industrial source of ], often as an ] solution called ]. It is an important feedstock in the preparation of many important compounds including pharmaceuticals and polymers (''e.g.'' ]). HF is widely used in the petrochemical industry as a component of ]s. Hydrogen fluoride boils near room temperature, much higher than other ]s.

Hydrogen fluoride is a highly dangerous gas, forming corrosive and penetrating hydrofluoric acid upon contact with moisture. The gas can also cause blindness by rapid destruction of the ]s. Hydrogen fluoride is a highly dangerous gas, forming corrosive and penetrating hydrofluoric acid upon contact with moisture. The gas can also cause blindness by rapid destruction of the ]s.



Revision as of 01:01, 17 October 2017

Hydrogen fluoride
Names
Other names Fluorane
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.028.759 Edit this at Wikidata
KEGG
PubChem CID
RTECS number
  • MW7875000
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/FH/h1HKey: KRHYYFGTRYWZRS-UHFFFAOYSA-N
  • InChI=1/FH/h1HKey: KRHYYFGTRYWZRS-UHFFFAOYAC
SMILES
  • F
Properties
Chemical formula HF
Molar mass 20.006 g·mol
Appearance colourless gas or colourless liquid (below 19.5°C)
Density 1.15 g/L, gas (25 °C)
0.99 g/mL, liquid (19.5 °C)
Melting point −83.6 °C (−118.5 °F; 189.6 K)
Boiling point 19.5 °C (67.1 °F; 292.6 K)
Solubility in water miscible
Vapor pressure 783 mmHg (20 °C)
Acidity (pKa) 3.17
Refractive index (nD) 1.00001
Structure
Molecular shape Linear
Dipole moment 1.86 D
Thermochemistry
Std molar
entropy
(S298)
8.687 J/g K (gas)
Std enthalpy of
formation
fH298)
−13.66 kJ/g (gas)
−14.99 kJ/g (liquid)
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
4 0 1
Lethal dose or concentration (LD, LC):
LC50 (median concentration) 1276 ppm (rat, 1 hr)
1774 ppm (monkey, 1 hr)
4327 ppm (guinea pig, 15 min)
LCLo (lowest published) 313 ppm (rabbit, 7 hr)
NIOSH (US health exposure limits):
PEL (Permissible) TWA 3 ppm
REL (Recommended) TWA 3 ppm (2.5 mg/m) C 6 ppm (5 mg/m)
IDLH (Immediate danger) 30 ppm
Related compounds
Other anions Hydrogen chloride
Hydrogen bromide
Hydrogen iodide
Hydrogen astatide
Other cations Sodium fluoride
Potassium fluoride
Rubidium fluoride
Caesium fluoride
Related compounds Water
Ammonia
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

BATMAN IS ALWAYS THE ANSWER!!! YOU QUESTION BATMAN YOU GO TO HELL!!!! SATAN WILL NOT EVEN EXEPT YOU AND U WILL GO TO INTERNET EXPLORER!!!!. Hydrogen fluoride is a highly dangerous gas, forming corrosive and penetrating hydrofluoric acid upon contact with moisture. The gas can also cause blindness by rapid destruction of the corneas.

French chemist Edmond Frémy (1814–1894) is credited with discovering anhydrous hydrogen fluoride while trying to isolate fluorine. Although Carl Wilhelm Scheele prepared hydrofluoric acid in large quantities in 1771, this acid was known in the glass industry before then.

Structure

The structure of chains of HF in crystalline hydrogen fluoride.
The structure of chains of HF in crystalline hydrogen fluoride.

Although a diatomic molecule, HF forms relatively strong intermolecular hydrogen bonds. Solid HF consists of zigzag chains of HF molecules. The HF molecules, with a short H–F bond of 95 pm, are linked to neighboring molecules by intermolecular H–F distances of 155 pm. Liquid HF also consists of chains of HF molecules, but the chains are shorter, consisting on average of only five or six molecules.

Comparison with other hydrogen halides

Hydrogen fluoride does not boil until 20 °C in contrast to the heavier hydrogen halides which boil between −85 °C (−120 °F) and −35 °C (−30 °F). This hydrogen bonding between HF molecules gives rise to high viscosity in the liquid phase and lower than expected pressure in the gas phase.

Hydrogen fluoride is miscible with water (dissolves in any proportion), whereas the other hydrogen halides have large solubility gaps with water. Hydrogen fluoride and water also form several compounds in the solid state, most notably a 1:1 compound that does not melt until −40 °C (−40 °F), which is 44 °C (79 °F) above the melting point of pure HF.

HF and H2O similarities
graph showing trend-breaking water and HF boiling points: big jogs up versus a trend that is down with lower molecular weight for the other series members. graph showing humps of melting temperature, most prominent is at HF 50% mole fraction
Boiling points of the hydrogen halides (blue) and hydrogen chalcogenides (red): HF and H2O break trends. Freezing point of HF/ H2O mixtures: arrows indicate compounds in the solid state.

Acidity

Unlike other hydrohalic acids, such as hydrochloric acid, hydrogen fluoride is only a weak acid in dilute aqueous solution. This is in part a result of the strength of the hydrogen-fluorine bond, but also of other factors such as the tendency of HF, H
2O, and F
anions to form clusters. At high concentrations, HF molecules undergo homoassociation to form polyatomic ions (such as bifluoride, HF
2) and protons, thus greatly increasing the acidity. This leads to protonation of very strong acids like hydrochloric, sulfuric, or nitric when using concentrated hydrofluoric acid solutions. Although hydrofluoric acid is regarded as a weak acid, it is very corrosive, even attacking glass when hydrated.

The acidity of hydrofluoric acid solutions varies with concentration owing to hydrogen-bond interactions of the fluoride ion. Dilute solutions are weakly acidic with an acid ionization constant Ka = 6.6×10 (or pKa = 3.18), in contrast to corresponding solutions of the other hydrogen halides which are strong acids (pKa < 0). Concentrated solutions of hydrogen fluoride are much more strongly acidic than implied by this value, as shown by measurements of the Hammett acidity function H0(or "effective pH"). The H0 for 100% HF is estimated to be between −10.2 and −11, comparable to the value −12 for sulfuric acid.

In thermodynamic terms, HF solutions are highly non-ideal, with the activity of HF increasing much more rapidly than its concentration. The weak acidity in dilute solution is sometimes attributed to the high H—F bond strength, which combines with the high dissolution enthalpy of HF to outweigh the more negative enthalpy of hydration of the fluoride ion. However, Giguère and Turrell have shown by infrared spectroscopy that the predominant solute species is the hydrogen-bonded ion pair , which suggests that the ionization can be described as a pair of successive equilibria:

H2O + HF {\displaystyle {\ce {<=>>}}}
{\displaystyle {\ce {<<=>}}} H3O + F

The first equilibrium lies well to the right (K ≫ 1) and the second to the left (K ≪ 1), meaning that HF is extensively dissociated, but that the tight ion pairs reduce the thermodynamic activity coefficient of H3O, so that the solution is effectively less acidic.

In concentrated solution, the additional HF causes the ion pair to dissociate with formation of the hydrogen-bonded hydrogen difluoride ion.

+ HF ⇌ H3O + HF
2

The increase in free H3O due to this reaction accounts for the rapid increase in acidity, while fluoride ions are stabilized (and become less basic) by strong hydrogen bonding to HF to form HF
2. This interaction between the acid and its own conjugate base is an example of homoassociation (homoconjugation). At the limit of 100% liquid HF, there is self-ionization

3 HF ⇌ H2F + HF
2

which forms an extremely acidic solution (H0 = −11).

The acidity of anhydrous HF can be increased even further by the addition of Lewis acids such as SbF5, which can reduce H0 to −21.

Solvent

Dry hydrogen fluoride readily dissolves low-valent metal fluorides as well as several molecular fluorides. Many proteins and carbohydrates can be dissolved in dry HF and recovered from it. In contrast, most non-fluoride inorganic chemicals react with HF rather than dissolving.

Production and uses

Hydrogen fluoride is produced by the action of sulfuric acid on pure grades of the mineral fluorite and also as a side-product of the extraction of the fertilizer precursor phosphoric acid from various minerals. See also hydrofluoric acid.

The anhydrous compound hydrogen fluoride is more commonly used than its aqueous solution, hydrofluoric acid. HF serves as a catalyst in alkylation processes in oil refineries. A component of high-octane petrol (gasoline) called "alkylate" is generated in alkylation units that combine C3 and C4 olefins and iso-butane to generate petrol (gasoline).

HF is a reactive solvent in the electrochemical fluorination of organic compounds. In this approach, HF is oxidized in the presence of a hydrocarbon and the fluorine replaces C–H bonds with C–F bonds. Perfluorinated carboxylic acids and sulfonic acids are produced in this way.

Hydrogen fluoride is an important catalyst used in the majority of the installed linear alkyl benzene production in the world. The process involves dehydrogenation of n-paraffins to olefins, and subsequent reaction with benzene using HF as catalyst.

Elemental fluorine, F2, is prepared by electrolysis of a solution of HF and potassium bifluoride. The potassium bifluoride is needed because anhydrous hydrogen fluoride does not conduct electricity. Several million kilograms of F2 are produced annually.

Acyl chlorides or acid anhydrides react with hydrogen fluoride to give acyl fluorides.

HF is often used in palynology to remove silicate minerals, for extraction of dinoflagellate cysts, acritarchs and chitinozoans.

1,1-Difluoroethane is produced by the mercury-catalyzed addition of hydrogen fluoride to acetylene:

HC≡CH + 2 HF → CH3CHF2

The intermediate in this process is vinyl fluoride or fluoroethylene, the monomeric precursor to polyvinyl fluoride.

Health effects

Main article: Hydrofluoric acid
left and right hands, two views, burned index fingers
HF burns, not evident until a day after

Upon contact with moisture, including tissue, hydrogen fluoride immediately converts to hydrofluoric acid, which is highly corrosive and toxic, and requires immediate medical attention upon exposure. Breathing in hydrogen fluoride at high levels or in combination with skin contact can cause death from an irregular heartbeat or from fluid buildup in the lungs.

Notes

  1. For more detailed explanation, see

References

  1. ^ NIOSH Pocket Guide to Chemical Hazards. "#0334". National Institute for Occupational Safety and Health (NIOSH).
  2. "pKa's of Inorganic and Oxo-Acids" (PDF). Harvard. Retrieved 9 September 2013.
  3. Bruckenstein, S.; Kolthoff, I.M., in Kolthoff, I.M.; Elving, P.J. Treatise on Analytical Chemistry, Vol. 1, pt. 1; Wiley, NY, 1959, pp. 432-433.
  4. ^ "Hydrogen fluoride". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  5. Johnson, M. W.; Sándor, E.; Arzi, E. (1975). "The Crystal Structure of Deuterium Fluoride". Acta Crystallographica. B31 (8): 1998–2003. doi:10.1107/S0567740875006711.
  6. Mclain, Sylvia E.; Benmore, CJ; Siewenie, JE; Urquidi, J; Turner, JF (2004). "On the Structure of Liquid Hydrogen Fluoride". Angewandte Chemie International Edition. 43 (15): 1952–55. doi:10.1002/anie.200353289. PMID 15065271.
  7. Pauling, Linus A. (1960). The nature of the chemical bond and the structure of molecules and crystals: An introduction to modern structural chemistry. Cornell University Press. pp. 454–464. ISBN 978-0-8014-0333-0.
  8. Atkins, Peter; Jones, Loretta (2008). Chemical principles: The quest for insight. W. H. Freeman & Co. pp. 184–185. ISBN 978-1-4292-0965-6.
  9. Emsley, John (1981). "The hidden strength of hydrogen". New Scientist. 91 (1264): 291–292. Retrieved 25 December 2012.
  10. Greenwood & Earnshaw 1998, pp. 812–816. sfn error: no target: CITEREFGreenwoodEarnshaw1998 (help)
  11. Wiberg, Wiberg & Holleman 2001, p. 425. sfn error: no target: CITEREFWibergWibergHolleman2001 (help)
  12. Clark, Jim (2002). "The acidity of the hydrogen halides". Retrieved 4 September 2011.
  13. ^ Chambers, C.; Holliday, A. K. (1975). Modern inorganic chemistry (An intermediate text) (PDF). The Butterworth Group. pp. 328–329.
  14. Hannan, Henry J. (2010). Course in chemistry for IIT-JEE 2011. Tata McGraw Hill Education Private Limited. pp. 15–22. ISBN 9780070703360.
  15. Ralph H. Petrucci; William S. Harwood; Jeffry D. Madura (2007). General chemistry: principles and modern applications. Pearson/Prentice Hall. p. 691. ISBN 978-0-13-149330-8. Retrieved 22 August 2011.
  16. Hyman HH, Kilpatrick M, Katz JJ (1957). "The Hammett Acidity Function H0for Hydrofluoric Acid Solutions1". Journal of the American Chemical Society. 79 (14): 3668–3671. doi:10.1021/ja01571a016. ISSN 0002-7863.
  17. ^ W.L. Jolly “Modern Inorganic Chemistry” (McGraw-Hill 1984), p. 203 ISBN 0-07-032768-8
  18. ^ F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry (5th ed.) John Wiley and Sons: New York, 1988. ISBN 0-471-84997-9 p. 109
  19. C.E. Housecroft and A.G. Sharpe "Inorganic Chemistry" (Pearson Prentice Hall, 2nd ed. 2005), p. 170.
  20. ^ Giguère, Paul A.; Turrell, Sylvia (1980). "The nature of hydrofluoric acid. A spectroscopic study of the proton-transfer complex H3O...F". J. Am. Chem. Soc. 102 (17): 5473. doi:10.1021/ja00537a008.
  21. Radu Iftimie; Vibin Thomas; Sylvain Plessis; Patrick Marchand; Patrick Ayotte (2008). "Spectral Signatures and Molecular Origin of Acid Dissociation Intermediates". J. Am. Chem. Soc. 130 (18): 5901–7. doi:10.1021/ja077846o. PMID 18386892.
  22. ^ F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry p. 104
  23. C.E. Housecroft and A.G. Sharpe Inorganic Chemistry p. 221
  24. F.A. Cotton and G. Wilkinson Advanced Inorganic Chemistry p. 111
  25. Greenwood & Earnshaw 1998, pp. 816–819. sfn error: no target: CITEREFGreenwoodEarnshaw1998 (help)
  26. Aigueperse J, Mollard P, Devilliers D, Chemla M, Faron R, Romano R, Cuer JP (2000). "Ullmann's Encyclopedia of Industrial Chemistry". doi:10.1002/14356007.a11_307. ISBN 3527306730. {{cite journal}}: |chapter= ignored (help); Cite journal requires |journal= (help)
  27. G. Siegemund, W. Schwertfeger, A. Feiring, B. Smart, F. Behr, H. Vogel, B. McKusick "Fluorine Compounds, Organic" in "Ullmann’s Encyclopedia of Industrial Chemistry" 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a11_349
  28. M. Jaccaud, R. Faron, D. Devilliers, R. Romano "Fluorine" in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005 doi:10.1002/14356007.a11_293.
  29. Olah G, Kuhn S (1961). "Preparation of Acyl Fluorides with Anhydrous Hydrogen Fluoride. The General Use of the Method of Colson and Fredenhagen". J. Org. Chem. 26: 237–238. doi:10.1021/jo01060a600.
  30. Siegemund, Günter; Schwertfeger, Werner; Feiring, Andrew; Smart, Bruce; Behr, Fred; Vogel, Herward; McKusick, Blaine (2010). "Fluorine Compounds, Organic". In Bohnet, Matthias; Bellussi, Giuseppe; Bus, James; et al. (eds.). Ullmann's Encyclopedia of Industrial Chemistry. John Wiley & Sons. doi:10.1002/14356007.a11_349.
  31. ^ Facts About Hydrogen Fluoride (Hydrofluoric Acid)

External links

Hydrogen compounds
Molecules detected in outer space
Molecules
Diatomic







Triatomic
Four
atoms
Five
atoms
Six
atoms
Seven
atoms
Eight
atoms
Nine
atoms
Ten
atoms
or more
Deuterated
molecules
Unconfirmed
Related
Fluorine compounds
Salts and covalent derivatives of the fluoride ion
HF ?HeF2
LiF BeF2 BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2 Ne
NaF MgF2 AlF
AlF3
SiF4 P2F4
PF3
PF5
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KF CaF
CaF2
ScF3 TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2 GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbF SrF
SrF2
YF3 ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2 InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsF BaF2   LuF3 HfF4 TaF5 WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
?PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrF RaF2   LrF3 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaF3 CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3 SmF
SmF2
SmF3
EuF2
EuF3
GdF3 TbF3
TbF4
DyF2
DyF3
DyF4
HoF3 ErF3 TmF2
TmF3
YbF2
YbF3
AcF3 ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
Fm Md No
PF−6, AsF−6, SbF−6 compounds
AlF2−5, AlF3−6 compounds
chlorides, bromides, iodides
and pseudohalogenides
SiF2−6, GeF2−6 compounds
Oxyfluorides
Organofluorides
with transition metal,
lanthanide, actinide, ammonium
nitric acids
bifluorides
thionyl, phosphoryl,
and iodosyl
Chemical formulas
Binary compounds of hydrogen
Alkali metal
(Group 1) hydrides
Alkaline (Group 2)
earth hydrides
Monohydrides
Dihydrides
Group 13
hydrides
Boranes
Alanes
Gallanes
Indiganes
Thallanes
Nihonanes (predicted)
  • NhH
  • NhH3
  • Nh2H6
  • NhH5
Group 14 hydrides
Hydrocarbons
Silanes
Silenes
Silynes
Germanes
Stannanes
Plumbanes
Flerovanes (predicted)
  • FlH
  • FlH2
  • FlH4
Pnictogen
(Group 15) hydrides
Azanes
Azenes
Phosphanes
Phosphenes
Arsanes
Stibanes
Bismuthanes
Moscovanes
Hydrogen
chalcogenides
(Group 16 hydrides)
Polyoxidanes
  • H2O
  • H2O2
  • H2O3
  • H2O4
  • H2O5
  • more...
  • Polysulfanes
    Selanes
    Tellanes
    Polanes
    Livermoranes
    Hydrogen halides
    (Group 17 hydrides)
  • HF
  • HCl
  • HBr
  • HI
  • HAt
  • HTs (predicted)
  • Transition
    metal hydrides
    Lanthanide hydrides
    Actinide hydrides
    Exotic matter hydrides
    Categories: