Misplaced Pages

Hydrogen fluoride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Not to be confused with the element hafnium, symbol Hf.
Hydrogen fluoride
Names
Other names Fluorane
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.028.759 Edit this at Wikidata
KEGG
PubChem CID
RTECS number
  • MW7875000
UNII
UN number 1052
CompTox Dashboard (EPA)
InChI
  • InChI=1S/FH/h1HKey: KRHYYFGTRYWZRS-UHFFFAOYSA-N
  • InChI=1/FH/h1HKey: KRHYYFGTRYWZRS-UHFFFAOYAC
SMILES
  • F
Properties
Chemical formula HF
Molar mass 20.006 g·mol
Appearance colourless gas or colourless liquid (below 19.5 °C)
Odor unpleasant
Density 1.15 g/L, gas (25 °C)
0.99 g/mL, liquid (19.5 °C)
1.663 g/mL, solid (–125 °C)
Melting point −83.6 °C (−118.5 °F; 189.6 K)
Boiling point 19.5 °C (67.1 °F; 292.6 K)
Solubility in water miscible (liquid)
Vapor pressure 783 mmHg (20 °C)
Acidity (pKa) 3.17 (in water),

15 (in DMSO)

Conjugate acid Fluoronium
Conjugate base Fluoride
Refractive index (nD) 1.00001
Structure
Molecular shape Linear
Dipole moment 1.86 D
Thermochemistry
Std molar
entropy
(S298)
8.687 J/g K (gas)
Std enthalpy of
formation
fH298)
−13.66 kJ/g (gas)
−14.99 kJ/g (liquid)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Highly toxic, corrosive, irritant
GHS labelling:
Pictograms GHS05: Corrosive GHS06: ToxicGHS07: Exclamation mark
Signal word Danger
Hazard statements H300+H310+H330, H314
Precautionary statements P260, P262, P264, P270, P271, P280, P284, P301+P310, P301+P330+P331, P302+P350, P303+P361+P353, P304+P340, P305+P351+P338, P310, P320, P321, P322, P330, P361, P363, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazard POI: Poisonous
4 0 1POI
Flash point none
Lethal dose or concentration (LD, LC):
LD50 (median dose) 17 ppm (rat, oral)
LC50 (median concentration) 1276 ppm (rat, 1 hr)
1774 ppm (monkey, 1 hr)
4327 ppm (guinea pig, 15 min)
LCLo (lowest published) 313 ppm (rabbit, 7 hr)
NIOSH (US health exposure limits):
PEL (Permissible) TWA 3 ppm
REL (Recommended) TWA 3 ppm (2.5 mg/m) C 6 ppm (5 mg/m)
IDLH (Immediate danger) 30 ppm
Related compounds
Other anions Hydrogen chloride
Hydrogen bromide
Hydrogen iodide
Hydrogen astatide
Other cations Sodium fluoride
Potassium fluoride
Rubidium fluoride
Caesium fluoride
Related compounds Water
Ammonia
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Hydrogen fluoride (fluorane) is an inorganic compound with chemical formula HF. It is a very poisonous, colorless gas or liquid that dissolves in water to yield hydrofluoric acid. It is the principal industrial source of fluorine, often in the form of hydrofluoric acid, and is an important feedstock in the preparation of many important compounds including pharmaceuticals and polymers such as polytetrafluoroethylene (PTFE). HF is also widely used in the petrochemical industry as a component of superacids. Due to strong and extensive hydrogen bonding, it boils near room temperature, a much higher temperature than other hydrogen halides.

Hydrogen fluoride is an extremely dangerous gas, forming corrosive and penetrating hydrofluoric acid upon contact with moisture. The gas can also cause blindness by rapid destruction of the corneas.

History

In 1771 Carl Wilhelm Scheele prepared the aqueous solution, hydrofluoric acid in large quantities, although hydrofluoric acid had been known in the glass industry before then. French chemist Edmond Frémy (1814–1894) is credited with discovering hydrogen fluoride (HF) while trying to isolate fluorine.

Structure and reactions

The structure of chains of HF in crystalline hydrogen fluoride.

HF is diatomic in the gas-phase. As a liquid, HF forms relatively strong hydrogen bonds, hence its relatively high boiling point. Solid HF consists of zig-zag chains of HF molecules. The HF molecules, with a short covalent H–F bond of 95 pm length, are linked to neighboring molecules by intermolecular H–F distances of 155 pm. Liquid HF also consists of chains of HF molecules, but the chains are shorter, consisting on average of only five or six molecules.

Comparison with other hydrogen halides

Hydrogen fluoride does not boil until 20 °C in contrast to the heavier hydrogen halides, which boil between −85 °C (−120 °F) and −35 °C (−30 °F). This hydrogen bonding between HF molecules gives rise to high viscosity in the liquid phase and lower than expected pressure in the gas phase.

Aqueous solutions

Main article: hydrofluoric acid

HF is miscible with water (dissolves in any proportion). In contrast, the other hydrogen halides exhibit limiting solubilities in water. Hydrogen fluoride forms a monohydrate HFH2O with melting point −40 °C (−40 °F), which is 44 °C (79 °F) above the melting point of pure HF.

HF and H2O similarities
graph showing trend-breaking water and HF boiling points: big jogs up versus a trend that is down with lower molecular weight for the other series members. graph showing humps of melting temperature, most prominent is at HF 50% mole fraction
Boiling points of the hydrogen halides (blue) and hydrogen chalcogenides (red): HF and H2O break trends. Freezing point of HF/ H2O mixtures: arrows indicate compounds in the solid state.

Aqueous solutions of HF are called hydrofluoric acid. When dilute, hydrofluoric acid behaves like a weak acid, unlike the other hydrohalic acids, due to the formation of hydrogen-bonded ion pairs . However concentrated solutions are strong acids, because bifluoride anions are predominant, instead of ion pairs. In liquid anhydrous HF, self-ionization occurs:

3 HF ⇌ H2F + HF−2

which forms an extremely acidic liquid (H0 = −15.1).

Reactions with Lewis acids

Like water, HF can act as a weak base, reacting with Lewis acids to give superacids. A Hammett acidity function (H0) of −21 is obtained with antimony pentafluoride (SbF5), forming fluoroantimonic acid.

Production

Hydrogen fluoride is typically produced by the reaction between sulfuric acid and pure grades of the mineral fluorite:

CaF2 + H2SO4 → 2 HF + CaSO4

About 20% of manufactured HF is a byproduct of fertilizer production, which generates hexafluorosilicic acid. This acid can be degraded to release HF thermally and by hydrolysis:

H2SiF6 → 2 HF + SiF4
SiF4 + 2 H2O → 4 HF + SiO2

Use

In general, anhydrous hydrogen fluoride is more common industrially than its aqueous solution, hydrofluoric acid. Its main uses, on a tonnage basis, are as a precursor to organofluorine compounds and a precursor to cryolite for the electrolysis of aluminium.

Precursor to organofluorine compounds

HF reacts with chlorocarbons to give fluorocarbons. An important application of this reaction is the production of tetrafluoroethylene (TFE), precursor to Teflon. Chloroform is fluorinated by HF to produce chlorodifluoromethane (R-22):

CHCl3 + 2 HF → CHClF2 + 2 HCl

Pyrolysis of chlorodifluoromethane (at 550-750 °C) yields TFE.

HF is a reactive solvent in the electrochemical fluorination of organic compounds. In this approach, HF is oxidized in the presence of a hydrocarbon and the fluorine replaces C–H bonds with C–F bonds. Perfluorinated carboxylic acids and sulfonic acids are produced in this way.

1,1-Difluoroethane is produced by adding HF to acetylene using mercury as a catalyst.

HC≡CH + 2 HF → CH3CHF2

The intermediate in this process is vinyl fluoride or fluoroethylene, the monomeric precursor to polyvinyl fluoride.

Precursor to metal fluorides and fluorine

The electrowinning of aluminium relies on the electrolysis of aluminium fluoride in molten cryolite. Several kilograms of HF are consumed per ton of Al produced. Other metal fluorides are produced using HF, including uranium tetrafluoride.

HF is the precursor to elemental fluorine, F2, by electrolysis of a solution of HF and potassium bifluoride. The potassium bifluoride is needed because anhydrous HF does not conduct electricity. Several thousand tons of F2 are produced annually.

Catalyst

HF serves as a catalyst in alkylation processes in refineries. It is used in the majority of the installed linear alkyl benzene production facilities in the world. The process involves dehydrogenation of n-paraffins to olefins, and subsequent reaction with benzene using HF as catalyst. For example, in oil refineries "alkylate", a component of high-octane petrol (gasoline), is generated in alkylation units, which combine C3 and C4 olefins and iso-butane.

Solvent

Hydrogen fluoride is an excellent solvent. Reflecting the ability of HF to participate in hydrogen bonding, even proteins and carbohydrates dissolve in HF and can be recovered from it. In contrast, most non-fluoride inorganic chemicals react with HF rather than dissolving.

Health effects

left and right hands, two views, burned index fingers
HF burns, not evident until a day after
Main articles: Hydrofluoric acid and Hydrofluoric acid burn

Hydrogen fluoride is highly corrosive and a powerful contact poison. Exposure requires immediate medical attention. It can cause blindness by rapid destruction of the corneas. Breathing in hydrogen fluoride at high levels or in combination with skin contact can cause death from an irregular heartbeat or from pulmonary edema (fluid buildup in the lungs).

References

  1. ^ NIOSH Pocket Guide to Chemical Hazards. "#0334". National Institute for Occupational Safety and Health (NIOSH).
  2. Evans, D. A. "pKa's of Inorganic and Oxo-Acids" (PDF). Retrieved June 19, 2020.
  3. ^ "Hydrogen fluoride". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. Johnson, M. W.; Sándor, E.; Arzi, E. (1975). "The Crystal Structure of Deuterium Fluoride". Acta Crystallographica. B31 (8): 1998–2003. doi:10.1107/S0567740875006711.
  5. McLain, Sylvia E.; Benmore, C. J.; Siewenie, J. E.; Urquidi, J.; Turner, J. F. (2004). "On the Structure of Liquid Hydrogen Fluoride". Angewandte Chemie International Edition. 43 (15): 1952–55. doi:10.1002/anie.200353289. PMID 15065271.
  6. Pauling, Linus A. (1960). The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry. Cornell University Press. pp. 454–464. ISBN 978-0-8014-0333-0.
  7. Atkins, Peter; Jones, Loretta (2008). Chemical principles: The quest for insight. W. H. Freeman & Co. pp. 184–185. ISBN 978-1097774678.
  8. Emsley, John (1981). "The hidden strength of hydrogen". New Scientist. 91 (1264): 291–292. Archived from the original on 22 July 2023. Retrieved 25 December 2012.
  9. Greenwood, N. N.; Earnshaw, A. (1998). Chemistry of the Elements (2nd ed.). Oxford: Butterworth Heinemann. pp. 812–816. ISBN 0-7506-3365-4.
  10. C. E. Housecroft and A. G. Sharpe Inorganic Chemistry, p. 221.
  11. F. A. Cotton and G. Wilkinson Advanced Inorganic Chemistry, p. 111.
  12. W. L. Jolly "Modern Inorganic Chemistry" (McGraw-Hill 1984), p. 203. ISBN 0-07-032768-8.
  13. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry (5th ed.) John Wiley and Sons: New York, 1988. ISBN 0-471-84997-9. p. 109.
  14. ^ J. Aigueperse, P. Mollard, D. Devilliers, M. Chemla, R. Faron, R. Romano, J. P. Cuer (2000). "Fluorine Compounds, Inorganic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_307. ISBN 3527306730.{{cite encyclopedia}}: CS1 maint: multiple names: authors list (link)
  15. ^ G. Siegemund, W. Schwertfeger, A. Feiring, B. Smart, F. Behr, H. Vogel, B. McKusick (2005). "Fluorine Compounds, Organic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_349. ISBN 978-3527306732.{{cite encyclopedia}}: CS1 maint: multiple names: authors list (link)
  16. M. Jaccaud, R. Faron, D. Devilliers, R. Romano (2005). "Fluorine". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_293. ISBN 978-3527306732.{{cite encyclopedia}}: CS1 maint: multiple names: authors list (link).
  17. Greenwood and Earnshaw, "Chemistry of the Elements", pp. 816–819.
  18. ^ Facts About Hydrogen Fluoride (Hydrofluoric Acid)

External links

Hydrogen compounds
Molecules detected in outer space
Molecules
Diatomic







Triatomic
Four
atoms
Five
atoms
Six
atoms
Seven
atoms
Eight
atoms
Nine
atoms
Ten
atoms
or more
Deuterated
molecules
Unconfirmed
Related
Fluorine compounds
Salts and covalent derivatives of the fluoride ion
HF ?HeF2
LiF BeF2 BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2 Ne
NaF MgF2 AlF
AlF3
SiF4 P2F4
PF3
PF5
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KF CaF
CaF2
ScF3 TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2 GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbF SrF
SrF2
YF3 ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2 InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsF BaF2   LuF3 HfF4 TaF5 WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
?PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrF RaF2   LrF3 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaF3 CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3 SmF
SmF2
SmF3
EuF2
EuF3
GdF3 TbF3
TbF4
DyF2
DyF3
DyF4
HoF3 ErF3 TmF2
TmF3
YbF2
YbF3
AcF3 ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
Fm Md No
PF−6, AsF−6, SbF−6 compounds
AlF2−5, AlF3−6 compounds
chlorides, bromides, iodides
and pseudohalogenides
SiF2−6, GeF2−6 compounds
Oxyfluorides
Organofluorides
with transition metal,
lanthanide, actinide, ammonium
nitric acids
bifluorides
thionyl, phosphoryl,
and iodosyl
Chemical formulas
Salts and covalent derivatives of the fluoride ion
HF ?HeF2
LiF BeF2 BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2 Ne
NaF MgF2 AlF
AlF3
SiF4 P2F4
PF3
PF5
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KF CaF
CaF2
ScF3 TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2 GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbF SrF
SrF2
YF3 ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2 InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsF BaF2   LuF3 HfF4 TaF5 WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
?PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrF RaF2   LrF3 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaF3 CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3 SmF
SmF2
SmF3
EuF2
EuF3
GdF3 TbF3
TbF4
DyF2
DyF3
DyF4
HoF3 ErF3 TmF2
TmF3
YbF2
YbF3
AcF3 ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
Fm Md No
Binary compounds of hydrogen
Alkali metal
(Group 1) hydrides
Alkaline (Group 2)
earth hydrides
Monohydrides
Dihydrides
Group 13
hydrides
Boranes
Alanes
Gallanes
Indiganes
Thallanes
Nihonanes (predicted)
  • NhH
  • NhH3
  • Nh2H6
  • NhH5
Group 14 hydrides
Hydrocarbons
Silanes
Silenes
Silynes
Germanes
Stannanes
Plumbanes
Flerovanes (predicted)
  • FlH
  • FlH2
  • FlH4
Pnictogen
(Group 15) hydrides
Azanes
Azenes
Phosphanes
Phosphenes
Arsanes
Stibanes
Bismuthanes
Moscovanes
Hydrogen
chalcogenides
(Group 16 hydrides)
Polyoxidanes
  • H2O
  • H2O2
  • H2O3
  • H2O4
  • H2O5
  • more...
  • Polysulfanes
    Selanes
    Tellanes
    Polanes
    Livermoranes
    Hydrogen halides
    (Group 17 hydrides)
  • HF
  • HCl
  • HBr
  • HI
  • HAt
  • HTs (predicted)
  • Transition
    metal hydrides
    Lanthanide hydrides
    Actinide hydrides
    Exotic matter hydrides
    Categories: