Misplaced Pages

Vitamin D receptor

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Calcitriol receptor) Transcription factor activated by vitamin D
VDR
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

1DB1, 1IE8, 1IE9, 1KB2, 1KB4, 1KB6, 1S0Z, 1S19, 1TXI, 1YNW, 2HAM, 2HAR, 2HAS, 2HB7, 2HB8, 3A2I, 3A2J, 3A3Z, 3A40, 3A78, 3AUQ, 3AUR, 3AX8, 3AZ1, 3AZ2, 3AZ3, 3B0T, 3CS4, 3CS6, 3KPZ, 3M7R, 3OGT, 3P8X, 3TKC, 3VHW, 4G2I, 3W0A, 3W0C, 3W0Y, 3WGP, 3WWR, 4ITE, 4ITF, 4PA2, 3X31, 3X36, 4FHH, 4FHI, 2HBH

Identifiers
AliasesVDR, NR1I1, PPP1R163, vitamin D (1,25- dihydroxyvitamin D3) receptor, vitamin D receptor
External IDsOMIM: 601769; MGI: 103076; HomoloGene: 37297; GeneCards: VDR; OMA:VDR - orthologs
Gene location (Human)
Chromosome 12 (human)
Chr.Chromosome 12 (human)
Chromosome 12 (human)Genomic location for VDRGenomic location for VDR
Band12q13.11Start47,841,537 bp
End47,943,048 bp
Gene location (Mouse)
Chromosome 15 (mouse)
Chr.Chromosome 15 (mouse)
Chromosome 15 (mouse)Genomic location for VDRGenomic location for VDR
Band15|15 F1Start97,752,306 bp
End97,808,511 bp
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • tibia

  • hair follicle

  • jejunal mucosa

  • mucosa of colon

  • mucosa of sigmoid colon

  • duodenum

  • mucosa of ileum

  • skin of arm

  • mucosa of transverse colon

  • periodontal fiber
Top expressed in
  • duodenum

  • lip

  • large intestine

  • right kidney

  • colon

  • crypt of lieberkuhn of small intestine

  • left colon

  • Paneth cell

  • jejunum

  • islet of Langerhans
More reference expression data
BioGPS




More reference expression data
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

7421

22337

Ensembl

ENSG00000111424

ENSMUSG00000022479

UniProt

P11473

P48281

RefSeq (mRNA)
NM_000376
NM_001017535
NM_001017536
NM_001364085
NM_001374661

NM_001374662

NM_009504

RefSeq (protein)
NP_000367
NP_001017535
NP_001017536
NP_001351014
NP_001361590

NP_001361591

NP_033530

Location (UCSC)Chr 12: 47.84 – 47.94 MbChr 15: 97.75 – 97.81 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

The vitamin D receptor (VDR also known as the calcitriol receptor) is a member of the nuclear receptor family of transcription factors. Calcitriol (the active form of vitamin D, 1,25-(OH)2vitamin D3) binds to VDR, which then forms a heterodimer with the retinoid-X receptor. The VDR heterodimer then enters the nucleus and binds to Vitamin D responsive elements (VDRE) in genomic DNA. VDR binding results in expression or transrepression of many specific gene products. VDR is also involved in microRNA-directed post transcriptional mechanisms. In humans, the vitamin D receptor is encoded by the VDR gene located on chromosome 12q13.11.

VDR is expressed in most tissues of the body, and regulates transcription of genes involved in intestinal and renal transport of calcium and other minerals. Glucocorticoids decrease VDR expression. Many types of immune cells also express VDR.

Function

The VDR gene encodes the nuclear hormone receptor for vitamin D. The most potent natural agonist is calcitriol (1,25-dihydroxycholecalciferol) and the vitamin D2 homologue ercalcitriol, 1-alpha,25-dihydroergocalciferol) is also a strong activator. Other forms of vitamin D bind with lower affinity, as does the secondary bile acid lithocholic acid. The receptor belongs to the family of trans-acting transcriptional regulatory factors and shows similarity of sequence to the steroid and thyroid hormone receptors.

Downstream targets of this nuclear hormone receptor include many genes involved in mineral metabolism. The receptor regulates a variety of other metabolic pathways, such as those involved in the immune response and cancer. VDR variants that bolster vitamin-D action and that are directly correlated with AIDS progression rates and VDR association with progression to AIDS follows an additive model. FokI polymorphism is a risk factor for enveloped virus infection as revealed in a meta-analysis. The importance of this gene has also been noted in the natural aging process were 3’UTR haplotypes of the gene showed an association with longevity.

Clinical relevance

Mutations in this gene are associated with type II vitamin D-resistant rickets. A single nucleotide polymorphism in the initiation codon results in an alternate translation start site three codons downstream. Alternative splicing results in multiple transcript variants encoding the same protein. VDR gene variants seem to influence many biological endpoints, including those related to osteoporosis

The vitamin D receptor plays an important role in regulating the hair cycle. Loss of VDR is associated with hair loss in experimental animals. Experimental studies have shown that the unliganded VDR interacts with regulatory regions in cWnt (wnt signaling pathway) and sonic hedgehog target genes and is required for the induction of these pathways during the postnatal hair cycle. These studies have revealed novel actions of the unliganded VDR in regulating the post-morphogenic hair cycle.

Researchers have focused their efforts in elucidating the role of VDR polymorphisms in different diseases and normal phenotypes such as the HIV-1 infection susceptibility and progression or the natural aging process. The most remarkable findings include the report of VDR variants that bolster vitamin-D action and that are directly correlated with AIDS progression rates, that VDR association with progression to AIDS follows an additive model and the role of FokI polymorphism as a risk factor for enveloped virus infection as revealed in a meta-analysis.

Interactions

Vitamin D receptor has been shown to interact with many other factors which will affect transcription activation:

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles.

[[File:
VitaminDSynthesis_WP1531Go to articleGo to articleGo to articleGo to articlego to articleGo to articleGo to articleGo to articlego to articlego to articlego to articlego to articleGo to articleGo to articlego to articleGo to articlego to articlego to articlego to articleGo to articlego to article
] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]
VitaminDSynthesis_WP1531Go to articleGo to articleGo to articleGo to articlego to articleGo to articleGo to articleGo to articlego to articlego to articlego to articlego to articleGo to articleGo to articlego to articleGo to articlego to articlego to articlego to articleGo to articlego to article
|alt=Vitamin D Synthesis Pathway (view / edit)]] Vitamin D Synthesis Pathway (view / edit)
  1. The interactive pathway map can be edited at WikiPathways: "VitaminDSynthesis_WP1531".

References

  1. ^ GRCh38: Ensembl release 89: ENSG00000111424Ensembl, May 2017
  2. ^ GRCm38: Ensembl release 89: ENSMUSG00000022479Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Moore DD, Kato S, Xie W, Mangelsdorf DJ, Schmidt DR, Xiao R, Kliewer SA (December 2006). "International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor". Pharmacol. Rev. 58 (4): 742–59. doi:10.1124/pr.58.4.6. PMID 17132852. S2CID 85996383.
  6. Lisse TS, Chun RF, Rieger S, Adams JS, Hewison M (June 2013). "Vitamin D activation of functionally distinct regulatory miRNAs in primary human osteoblasts". J Bone Miner Res. 28 (6): 1478–14788. doi:10.1002/jbmr.1882. PMC 3663893. PMID 23362149.
  7. Szpirer J, Szpirer C, Riviere M, Levan G, Marynen P, Cassiman JJ, Wiese R, DeLuca HF (September 1991). "The Sp1 transcription factor gene (SP1) and the 1,25-dihydroxyvitamin D3 receptor gene (VDR) are colocalized on human chromosome arm 12q and rat chromosome 7". Genomics. 11 (1): 168–73. doi:10.1016/0888-7543(91)90114-T. PMID 1662663.
  8. ^ Fleet JC, Schoch RD (August 2010). "Molecular Mechanisms for Regulation of Intestinal Calcium Absorption by Vitamin D and Other Factors". Crit Rev Clin Lab Sci. 47 (4): 181–195. doi:10.3109/10408363.2010.536429. PMC 3235806. PMID 21182397.
  9. ^ Adorini L, Daniel KC, Penna G (2006). "Vitamin D receptor agonists, cancer and the immune system: an intricate relationship". Curr Top Med Chem. 6 (12): 1297–301. doi:10.2174/156802606777864890. PMID 16848743.
  10. Germain P, Staels B, Dacquet C, Spedding M, Laudet V (December 2006). "Overview of nomenclature of nuclear receptors". Pharmacol. Rev. 58 (4): 685–704. doi:10.1124/pr.58.4.2. PMID 17132848. S2CID 1190488.
  11. ^ Laplana M, Sánchez-de-la-Torre M, Puig T, Caruz A, Fibla J (July 2014). "Vitamin-D pathway genes and HIV-1 disease progression in injection drug users". Gene. 545 (1): 163–9. doi:10.1016/j.gene.2014.04.035. hdl:10459.1/67999. PMID 24768180.
  12. ^ Laplana M, Royo L, Fibla J (December 2018). "Vitamin D Receptor polymorphisms and risk of enveloped virus infection: A meta-analysis". Gene. 678: 384–94. doi:10.1016/j.gene.2018.08.017. hdl:10459.1/68000. PMID 30092343. S2CID 51955566.
  13. Laplana M, Sánchez-de-la-Torre M, Aguiló A, Casado I, Flores M, Sánchez-Pellicer R, Fibla J (April 2010). "Tagging long-lived individuals through vitamin-D receptor (VDR) haplotypes". Biogerontology. 11 (4): 437–46. doi:10.1007/s10522-010-9273-8. hdl:10459.1/67920. PMID 20407924. S2CID 34809120.
  14. "Entrez Gene: VDR vitamin D (1,25- dihydroxyvitamin D3) receptor".
  15. Abouzid M, Karazniewicz-Lada M, Glowka F (2018-10-19). "Genetic Determinants of Vitamin D-Related Disorders; Focus on Vitamin D Receptor". Current Drug Metabolism. 19 (12): 1042–1052. doi:10.2174/1389200219666180723143552. PMID 30039758. S2CID 51710351.
  16. Luderer HF, Demay MB (July 2010). "The vitamin D receptor, the skin and stem cells". J. Steroid Biochem. Mol. Biol. 121 (1–2): 314–6. doi:10.1016/j.jsbmb.2010.01.015. PMID 20138991. S2CID 23876206.
  17. Lisse TS, Saini V, Zhao H, Luderer HF, Gori F, Demay MB (September 2014). "The Vitamin D Receptor Is Required for Activation of cWnt and Hedgehog Signaling in Keratinocytes". Mol. Endocrinol. 28 (10): 1698–1706. doi:10.1210/me.2014-1043. PMC 4179637. PMID 25180455.
  18. Guzey M, Takayama S, Reed JC (December 2000). "BAG1L enhances trans-activation function of the vitamin D receptor". J. Biol. Chem. 275 (52): 40749–56. doi:10.1074/jbc.M004977200. PMID 10967105.
  19. Zhao G, Simpson RU (2010). "Membrane Localization, Caveolin-3 Association and Rapid Actions of Vitamin D Receptor in Cardiac Myocytes". Steroids. 75 (8–9): 555–9. doi:10.1016/j.steroids.2009.12.001. PMC 2885558. PMID 20015453.
  20. ^ Ito M, Yuan CX, Malik S, Gu W, Fondell JD, Yamamura S, Fu ZY, Zhang X, Qin J, Roeder RG (March 1999). "Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators". Mol. Cell. 3 (3): 361–70. doi:10.1016/S1097-2765(00)80463-3. PMID 10198638.
  21. ^ Tagami T, Lutz WH, Kumar R, Jameson JL (December 1998). "The interaction of the vitamin D receptor with nuclear receptor corepressors and coactivators". Biochem. Biophys. Res. Commun. 253 (2): 358–63. doi:10.1006/bbrc.1998.9799. PMID 9878542.
  22. ^ Puccetti E, Obradovic D, Beissert T, Bianchini A, Washburn B, Chiaradonna F, Boehrer S, Hoelzer D, Ottmann OG, Pelicci PG, Nervi C, Ruthardt M (December 2002). "AML-associated translocation products block vitamin D(3)-induced differentiation by sequestering the vitamin D(3) receptor". Cancer Res. 62 (23): 7050–8. PMID 12460926.
  23. Herdick M, Steinmeyer A, Carlberg C (June 2000). "Antagonistic action of a 25-carboxylic ester analogue of 1alpha, 25-dihydroxyvitamin D3 is mediated by a lack of ligand-induced vitamin D receptor interaction with coactivators". J. Biol. Chem. 275 (22): 16506–12. doi:10.1074/jbc.M910000199. PMID 10748178.
  24. ^ Zhang C, Baudino TA, Dowd DR, Tokumaru H, Wang W, MacDonald PN (November 2001). "Ternary complexes and cooperative interplay between NCoA-62/Ski-interacting protein and steroid receptor coactivators in vitamin D receptor-mediated transcription". J. Biol. Chem. 276 (44): 40614–20. doi:10.1074/jbc.M106263200. PMID 11514567.
  25. He B, Wilson EM (March 2003). "Electrostatic Modulation in Steroid Receptor Recruitment of LXXLL and FXXLF Motifs". Mol. Cell. Biol. 23 (6): 2135–50. doi:10.1128/MCB.23.6.2135-2150.2003. PMC 149467. PMID 12612084.
  26. ^ Baudino TA, Kraichely DM, Jefcoat SC, Winchester SK, Partridge NC, MacDonald PN (June 1998). "Isolation and characterization of a novel coactivator protein, NCoA-62, involved in vitamin D-mediated transcription". J. Biol. Chem. 273 (26): 16434–41. doi:10.1074/jbc.273.26.16434. PMID 9632709.
  27. Vidal M, Ramana CV, Dusso AS (April 2002). "Stat1-Vitamin D Receptor Interactions Antagonize 1,25-Dihydroxyvitamin D Transcriptional Activity and Enhance Stat1-Mediated Transcription". Mol. Cell. Biol. 22 (8): 2777–87. doi:10.1128/MCB.22.8.2777-2787.2002. PMC 133712. PMID 11909970.
  28. Ward JO, McConnell MJ, Carlile GW, Pandolfi PP, Licht JD, Freedman LP (December 2001). "The acute promyelocytic leukemia-associated protein, promyelocytic leukemia zinc finger, regulates 1,25-dihydroxyvitamin D(3)-induced monocytic differentiation of U937 cells through a physical interaction with vitamin D(3) receptor". Blood. 98 (12): 3290–300. doi:10.1182/blood.V98.12.3290. PMID 11719366.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

PDB gallery
  • 2hb8: Crystal structure of VDR LBD in complex with 2alpha-methyl calcitriol 2hb8: Crystal structure of VDR LBD in complex with 2alpha-methyl calcitriol
  • 1ynw: Crystal Structure of Vitmain D Receptor and 9-cis Retinoic Acid Receptor DNA-Binding Domains Bound to a DR3 Response Element 1ynw: Crystal Structure of Vitmain D Receptor and 9-cis Retinoic Acid Receptor DNA-Binding Domains Bound to a DR3 Response Element
  • 1kb2: Crystal Structure of VDR DNA-binding Domain Bound to Mouse Osteopontin (SPP) Response Element 1kb2: Crystal Structure of VDR DNA-binding Domain Bound to Mouse Osteopontin (SPP) Response Element
  • 1db1: CRYSTAL STRUCTURE OF THE NUCLEAR RECEPTOR FOR VITAMIN D COMPLEXED TO VITAMIN D 1db1: CRYSTAL STRUCTURE OF THE NUCLEAR RECEPTOR FOR VITAMIN D COMPLEXED TO VITAMIN D
  • 1s0z: Crystal structure of the VDR LBD complexed to seocalcitol. 1s0z: Crystal structure of the VDR LBD complexed to seocalcitol.
  • 2ham: Crystal structure of VDR LBD complexed to 2alpha-propyl-calcitriol 2ham: Crystal structure of VDR LBD complexed to 2alpha-propyl-calcitriol
  • 2har: Crystal structure of VDR LBD in complex with 2 alpha-(3-hydroxy-1-propoxy) calcitriol 2har: Crystal structure of VDR LBD in complex with 2 alpha-(3-hydroxy-1-propoxy) calcitriol
  • 1kb6: Crystal Structure of VDR DNA-binding Domain Bound to Rat Osteocalcin (OC) Response Element 1kb6: Crystal Structure of VDR DNA-binding Domain Bound to Rat Osteocalcin (OC) Response Element
  • 1ie9: Crystal Structure Of The Nuclear Receptor For Vitamin D Ligand Binding Domain Bound to MC1288 1ie9: Crystal Structure Of The Nuclear Receptor For Vitamin D Ligand Binding Domain Bound to MC1288
  • 1s19: Crystal structure of VDR ligand binding domain complexed to calcipotriol. 1s19: Crystal structure of VDR ligand binding domain complexed to calcipotriol.
  • 2has: Crystal structure of VDR LBD in complex with 2alpha-(1-propoxy) calcitriol 2has: Crystal structure of VDR LBD in complex with 2alpha-(1-propoxy) calcitriol
  • 1ie8: Crystal Structure Of The Nuclear Receptor For Vitamin D Ligand Binding Domain Bound to KH1060 1ie8: Crystal Structure Of The Nuclear Receptor For Vitamin D Ligand Binding Domain Bound to KH1060
  • 1txi: Crystal structure of the vdr ligand binding domain complexed to TX522 1txi: Crystal structure of the vdr ligand binding domain complexed to TX522
  • 2hb7: Crystal structure of VDR LBD in complex with 2alpha(3-hydroxy-1-propyl) calcitriol 2hb7: Crystal structure of VDR LBD in complex with 2alpha(3-hydroxy-1-propyl) calcitriol
  • 1kb4: Crystal Structure of VDR DNA-binding Domain Bound to a Canonical Direct Repeat with Three Base Pair Spacer (DR3) Response Element 1kb4: Crystal Structure of VDR DNA-binding Domain Bound to a Canonical Direct Repeat with Three Base Pair Spacer (DR3) Response Element
Transcription factors and intracellular receptors
(1) Basic domains
(1.1) Basic leucine zipper (bZIP)
(1.2) Basic helix-loop-helix (bHLH)
Group A
Group B
Group C
bHLH-PAS
Group D
Group E
Group F
bHLH-COE
(1.3) bHLH-ZIP
(1.4) NF-1
(1.5) RF-X
(1.6) Basic helix-span-helix (bHSH)
(2) Zinc finger DNA-binding domains
(2.1) Nuclear receptor (Cys4)
subfamily 1
subfamily 2
subfamily 3
subfamily 4
subfamily 5
subfamily 6
subfamily 0
(2.2) Other Cys4
(2.3) Cys2His2
(2.4) Cys6
(2.5) Alternating composition
(2.6) WRKY
(3) Helix-turn-helix domains
(3.1) Homeodomain
Antennapedia
ANTP class
protoHOX
Hox-like
metaHOX
NK-like
other
(3.2) Paired box
(3.3) Fork head / winged helix
(3.4) Heat shock factors
(3.5) Tryptophan clusters
(3.6) TEA domain
  • transcriptional enhancer factor
(4) β-Scaffold factors with minor groove contacts
(4.1) Rel homology region
(4.2) STAT
(4.3) p53-like
(4.4) MADS box
(4.6) TATA-binding proteins
(4.7) High-mobility group
(4.9) Grainyhead
(4.10) Cold-shock domain
(4.11) Runt
(0) Other transcription factors
(0.2) HMGI(Y)
(0.3) Pocket domain
(0.5) AP-2/EREBP-related factors
(0.6) Miscellaneous
see also transcription factor/coregulator deficiencies
Vitamin D receptor modulators
VDRTooltip Vitamin D receptor
See also
Receptor/signaling modulators
Categories: