Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
During starvation, in type 2 diabetes, in rapidly dividing cells during embryogenesis, in tumors (Warburg effect) and during T cell proliferation, aerobic glycolysis is induced to produce the building block to sustain growth. FOXK1 is one of the transcription factors managing the passage from the normal cellular respiration (complete glucose oxidation) to generating ATP and intermediaries for many other biochemical pathways.
FOXK1 and its closely relate sibling FOXK2 induce aerobic glycolysis by upregulating the enzymatic machinery required for this (for example, hexokinase-2, phosphofructokinase, pyruvate kinase, and lactate dehydrogenase), while at the same time suppressing further oxidation of pyruvate in the mitochondria by increasing the activity of pyruvate dehydrogenase kinases 1 and 4. Together with suppression of the catalytic subunit of pyruvate dehydrogenase phosphatase 1 this leads to increased phosphorylation of the E1α regulatory subunit of the pyruvate dehydrogenase complex, which in turn inhibits further oxidation of pyruvate in the mitochondria—instead, pyruvate is reduced to lactate. Suppression of FOXK1 and FOXK2 induce the opposite phenotype. Both in vitro and in vivo experiments, including studies of primary human cells, show how FOXK1 and/or FOXK2 are likely to act as important regulators that reprogram cellular metabolism to induce aerobic glycolysis.
"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
Katoh M, Katoh M (July 2004). "Identification and characterization of human FOXK1 gene in silico". International Journal of Molecular Medicine. 14 (1): 127–132. doi:10.3892/ijmm.14.1.127. PMID15202027.
Huang JT, Lee V (September 2004). "Identification and characterization of a novel human FOXK1 gene in silico". International Journal of Oncology. 25 (3): 751–757. doi:10.3892/ijo.25.3.751. PMID15289879.