Misplaced Pages

FOXP1

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Protein-coding gene in the species Homo sapiens

FOXP1
Available structures
PDBHuman UniProt search: PDBe RCSB
List of PDB id codes

2KIU

Identifiers
AliasesFOXP1, 12CC4, HSPC215, MFH, QRF1, hFKH1B, forkhead box P1
External IDsOMIM: 605515; HomoloGene: 136512; GeneCards: FOXP1; OMA:FOXP1 - orthologs
Gene location (Human)
Chromosome 3 (human)
Chr.Chromosome 3 (human)
Chromosome 3 (human)Genomic location for FOXP1Genomic location for FOXP1
Band3p13Start70,954,693 bp
End71,583,978 bp
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • pancreatic ductal cell

  • cardia

  • saphenous vein

  • pylorus

  • mucosa of ileum

  • pericardium

  • urethra

  • buccal mucosa cell

  • epithelium of lactiferous gland

  • lactiferous duct
    n/a
More reference expression data
BioGPS
n/a
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

27086

n/a

Ensembl

ENSG00000114861

n/a

UniProt

Q9H334

n/a

RefSeq (mRNA)
NM_001012505
NM_001244808
NM_001244810
NM_001244812
NM_001244813

NM_001244814
NM_001244815
NM_001244816
NM_032682
NM_001349338
NM_001349340
NM_001349341
NM_001349342
NM_001349343
NM_001349344
NM_001349337
NM_001370548

n/a

RefSeq (protein)
NP_001012523
NP_001231737
NP_001231739
NP_001231741
NP_001231742

NP_001231743
NP_001231744
NP_001231745
NP_116071
NP_001336267
NP_001336269
NP_001336270
NP_001336271
NP_001336272
NP_001336273
NP_001336266

n/a

Location (UCSC)Chr 3: 70.95 – 71.58 Mbn/a
PubMed searchn/a
Wikidata
View/Edit Human

Forkhead box protein P1 is a protein that in humans is encoded by the FOXP1 gene. FOXP1 is necessary for the proper development of the brain, heart, and lung in mammals. It is a member of the large FOX family of transcription factors.

Function

This gene belongs to subfamily P of the forkhead box (FOX) transcription factor family. Forkhead box transcription factors play important roles in the regulation of tissue- and cell type-specific gene transcription during both development and adulthood. Forkhead box P1 protein contains both DNA-binding- and protein-protein binding-domains. This gene may act as a tumor suppressor as it is lost in several tumor types and maps to a chromosomal region (3p14.1) reported to contain a tumor suppressor gene(s). Alternative splicing results in multiple transcript variants encoding different isoforms.

Foxp1 is a transcription factor; specifically it is a transcriptional repressor. Fox genes are part of a forkhead DNA-binding domain family. This domain binds to sequences in promoters and enhancers of many genes. Foxp1 regulates a variety of important aspects of development including tissue development of: the lungs, brain, thymus and heart. In the heart Foxp1 has 3 vital roles, these include the regulation of cardiac myocyte maturation and proliferation, outflow tract separation of the pulmonary artery and aorta, and expression of Sox4 in cushions and myocardium. Foxp1 is also an important gene in muscle development of the esophagus and esophageal epithelium. Foxp1 is also an important regulator of lung airway morphogenesis. Foxp1 knockout embryos display severe defects in cardiac morphogenesis. A few of these defects include myocyte maturation and proliferation defects that cause a thin ventricular myocardial compact zone, non-separation of the pulmonary artery and aorta, and cardiomyocyte proliferation increase and defective differentiation. These defects, caused by Foxp1 inactivation, lead to fetal death. Disruptions of FoxP1 have been identified in very rare human patients and – similarly to FoxP2 - lead to cognitive dysfunction, including intellectual disability and autism spectrum disorder, together with language impairment.

It was shown that the embryonic stem cell (ESC)-specific isoform of FOXP1 stimulates the expression of transcription factor genes required for pluripotency, including OCT4, NANOG, NR5A2, and GDF3, while concomitantly repressing genes required for ESC differentiation. This isoform also promotes the maintenance of ESC pluripotency and contributes to efficient reprogramming of somatic cells into induced pluripotent stem cells. These results reveal a pivotal role for an Alternative splicing event in the regulation of pluripotency through the control of critical ESC-specific transcriptional programs.

See also

References

  1. ^ GRCh38: Ensembl release 89: ENSG00000114861Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Entrez Gene: FOXP1 forkhead box P1".
  4. Bacon C, Rappold GA (November 2012). "The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders". Human Genetics. 131 (11): 1687–1698. doi:10.1007/s00439-012-1193-z. PMC 3470686. PMID 22736078.
  5. Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O'Hanlon D, Sung HK, et al. (September 2011). "An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming". Cell. 147 (1): 132–146. doi:10.1016/j.cell.2011.08.023. PMID 21924763. S2CID 4978953.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Transcription factors and intracellular receptors
(1) Basic domains
(1.1) Basic leucine zipper (bZIP)
(1.2) Basic helix-loop-helix (bHLH)
Group A
Group B
Group C
bHLH-PAS
Group D
Group E
Group F
bHLH-COE
(1.3) bHLH-ZIP
(1.4) NF-1
(1.5) RF-X
(1.6) Basic helix-span-helix (bHSH)
(2) Zinc finger DNA-binding domains
(2.1) Nuclear receptor (Cys4)
subfamily 1
subfamily 2
subfamily 3
subfamily 4
subfamily 5
subfamily 6
subfamily 0
(2.2) Other Cys4
(2.3) Cys2His2
(2.4) Cys6
(2.5) Alternating composition
(2.6) WRKY
(3) Helix-turn-helix domains
(3.1) Homeodomain
Antennapedia
ANTP class
protoHOX
Hox-like
metaHOX
NK-like
other
(3.2) Paired box
(3.3) Fork head / winged helix
(3.4) Heat shock factors
(3.5) Tryptophan clusters
(3.6) TEA domain
  • transcriptional enhancer factor
(4) β-Scaffold factors with minor groove contacts
(4.1) Rel homology region
(4.2) STAT
(4.3) p53-like
(4.4) MADS box
(4.6) TATA-binding proteins
(4.7) High-mobility group
(4.9) Grainyhead
(4.10) Cold-shock domain
(4.11) Runt
(0) Other transcription factors
(0.2) HMGI(Y)
(0.3) Pocket domain
(0.5) AP-2/EREBP-related factors
(0.6) Miscellaneous
see also transcription factor/coregulator deficiencies
Categories: